THE 4th INTERNATIONAL CONFERENCE ON MOLECULAR NEURODEGENERATION

ICMN 2016: Novel Systems and Emerging Concepts

May 9 - 11, 2016
Seoul, Korea
CONTENTS

01 Welcome Message
02 Organizing Committees
04 Program at a Glance
05 Floor Plan
06 Conference Information
10 Exhibition & Sponsors
15 Scientific Program
16 - Invited Speakers
26 - Daily Program
31 Posters
45 Abstracts
119 Author Index
Dear Delegates,

On behalf of Molecular Neurodegeneration and Korean Society of Neurodegenerative Disorder (KSND), we are pleased to welcome you to Seoul, Korea, for the 4th International Conference on Molecular Neurodegeneration 2016: Novel Systems and Emerging Concepts.

Now more than ever, as neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease, and dementia increasingly grow in scale and urgency, so does the importance of our mission. The over 450 scientists, researchers and industry leaders from over 30 countries we have gathered for ICMN2016 will focus on our goals of finding new techniques and therapies as well as developing our on-going studies.

We hope the stimulating scientific program and ample networking opportunities we have assembled will not only be of great benefit to all, but will also mark a milestone in our evolution of the Molecular Neurodegeneration field.

The host society, KSND, is honored to hold this 4th ICMN and wishes you all a productive conference. And while you are here, we encourage you to discover the beautiful city of Seoul, enjoy the unique culture of Korea, and take advantage of the various opportunities to make new friends.

Again, we welcome you to Seoul and ICMN 2016.

With best wishes,

Dr. Guojun Bu
Co-Editor-in-Chief
Molecular Neurodegeneration

Dr. Huaxi Xu
Co-Editor-in-Chief
Molecular Neurodegeneration

Prof. Seung Hyun Kim
Chairman, LOC of ICMN 2016
President, Korean Society of Neurodegenerative Disorder
ORGANIZING COMMITTEES

INTERNATIONAL ORGANIZING COMMITTEE

- **Guojun Bu**
 Mayo Clinic Jacksonville, USA
- **Jungsu Kim**
 Mayo Clinic Jacksonville, USA
- **Henrietta Nielsen**
 Stockholm University, Sweden
- **Robert Vassar**
 Northwestern University Medical School, USA
- **Huaxi Xu**
 Sanford Burnham Prebys Medical Discovery Institute, USA
- **Hui Zheng**
 Baylor College of Medicine, USA

LOCAL ORGANIZING COMMITTEE

CHAIRMAN
- **Seung Hyun Kim**
 Hanyang University Hospital

PROGRAM COMMITTEE
- **Inhee Mook-Jung**
 Seoul National University
- **Jung-Joon Sung**
 Seoul National University
- **Sangmee Ahn**
 Dankook University

ADVISORY COMMITTEE
- **Yoo-Hun Suh**
 Korean Society of Neurodegenerative Disorder
- **Kwang-Woo Lee**
 Korean Society of Neurodegenerative Disorder
- **Pyung-Lim Han**
 Korean Society of Neurodegenerative Disorder
- **Seol-heui Han**
 Korean Dementia Association
- **Sang Yun Kim**
 Korean Dementia Association
- **Jae-Hong Lee**
 Korean Dementia Association
- **Young Ho Sohn**
 The Korean Movement Disorders Society
- **Uhtaek Oh**
 The Korean Society for Brain and Neural Science
- **Bong-Kiun Kaang**
 The Korean Society for Brain and Neural Science
- **Byung-Chul Lee**
 Korean Neurological Association
- **Seong-Ho Park**
 Korean Neurological Association

SECRETARY
- **Kee Hyung Park**
 Gachon University Gil Medical Center

VICE-SECRETARY
- **Soung Min Kim**
 Seoul National University
MOLECULAR NEURODEGENERATION

Molecular Neurodegeneration is an open access, peer-reviewed online journal that encompasses all aspects of neurodegeneration research at the molecular and cellular levels.

Neurodegenerative diseases collectively refer to neurological disorders that result from neurodegeneration and include, but are not limited to, Alzheimer’s disease, Parkinson disease, Huntington disease, and prion diseases. These diseases, which are often associated with advanced aging and display varying degrees of dementia, have become a significant public health issue as humans live longer and the aging population grows larger. Recent advances in the molecular and cellular mechanisms underlying the pathogenesis of these neurodegenerative disorders have allowed for a better understanding of the disease mechanisms.

Molecular Neurodegeneration welcomes original research that addresses the mechanisms of neurodegeneration at the cellular, subcellular and molecular levels, and potential therapeutic interventions for neurodegenerative diseases. Through the publication of reviews, editorial commentaries and meeting reports, the journal aims to provide a forum that enhances the exchange of ideas and to promote debate that is essential for scientific progress. With rapid peer review and online, open access publication, Molecular Neurodegeneration enables scientists to promptly communicate their important research discoveries to their colleagues around the world.

www.molecularneurodegeneration.com

KOREAN SOCIETY OF NEURODEGENERATIVE DISORDER

Korean Society of Neurodegenerative Disorder (KSND) was founded in 2007 in order to develop and improve research of neurodegenerative diseases by building a network among field researchers and scientists.

In 2007, Korean Society of Neurodegenerative Disorder held the 1st International Symposium in commemoration of its founding, and has held academic symposiums annually ever since. In 2014, it held the Brain Conference in conjunction with the Korean Society for Brain and Neural Science (KSBNS). The Korean Society for Brain and Neural Science and Korean Society of Neurodegenerative Disorder co-publish the quarterly Experimental Neurobiology (EN; ISSN. 1226-2560), an international forum for interdisciplinary investigations of the nervous system.

Experimental Neurobiology aims to publish papers that present novel observations in all fields of neuroscience, encompassing cellular and molecular neuroscience, development; differentiation; plasticity, neurobiology of disease, systems; cognitive; behavioral neuroscience, drug development and industrial application, brain-machine interface, methodologies; tools, and clinical neuroscience. Experimental Neurobiology is an open access, peer-reviewed online journal and does not charge authors for submission or publication fees.

www.ksnd.org
www.en-journal.org
PROGRAM AT A GLANCE

May 9 (Mon)

07:30-08:30
Registration (07:30-08:30)

08:00-08:30
Welcome Remarks

08:30-09:00
Session 1
(Genetics of Neurodegeneration)

09:00-09:30
Coffee Break

09:30-10:00
Session 2
(Clinical and Biomarker Studies)

10:00-10:30
Coffee Break

10:30-11:00
Lunch

11:00-11:30
Session 3
(Emerging Systems for Neurodegeneration Research)

11:30-12:00
Coffee Break

12:00-12:30
Short Talk 1

12:30-13:00
Panel Discussion 1
(Biomarkers and Therapeutic Targets)

13:00-13:30
Poster Session 1 & Welcome Reception

May 10 (Tues)

07:30-08:15
Registration (07:30-08:15)

08:00-08:30
Session 4
(Mechanisms of Alzheimer’s Disease: Molecular Pathways)

08:30-09:00
Coffee Break

09:00-09:30
Session 5
(Mechanisms of AD-related Dementia)

09:30-10:00
Session 6
(Novel Pathogenic Mechanisms in Neurodegeneration)

10:00-10:30
Coffee Break

10:30-11:00
Short Talk 2

11:00-11:30
Panel Discussion 2
(Pathogenic Mechanisms)

11:30-12:00
Poster Session 2

May 11 (Wed)

07:30-08:15
Registration (07:30-08:15)

08:00-08:30
Session 7
(Emerging Mechanisms and Therapies in Neurodegeneration)

08:30-09:00
Coffee Break

09:00-09:30
Session 8
(Glia and Innate Immunity in Neurodegeneration)

09:30-10:00
Closing Remarks

10:00-10:15
Optional Tour

Refreshments and snacks will be served during Poster Session 1 & Welcome Reception and Poster session 2.
CONFERENCE INFORMATION

REGISTRATION DESK
All conference attendees should check-in at the registration desk to receive their badge and conference bag prior to attending the sessions.

Location
4F Lobby, in front of Room 401

Operation Hours
Sunday, May 8 15:00-18:00
Monday, May 9 07:30-19:00
Tuesday, May 10 07:30-19:00
Wednesday, May 11 07:30-13:00

ON-SITE REGISTRATION FEES
Registration fees include access to all scientific sessions, exhibition, conference bag, program & abstract book, coffee breaks, lunches, and welcome reception.

Standard USD 850
Student, Resident, Post-Doc USD 350

BADGE
Each participant will receive a name badge upon registration. For security reasons, participants are requested to wear their badge for all conference activities. Admittance to sessions and exhibition area may be refused to those without badge.

CERTIFICATE OF ATTENDANCE
Participants will be able to receive certificates of attendance from the afternoon of May 9 (Mon) to May 11 (Wed) at the on-site registration desk. After the conference, you can print out from the Conference Website.

PROGRAM CHANGES AND ANNOUNCEMENTS
Important messages or changes to the conference program that were received after the printing of this program book will be included in your conference bag. Updates and messages received on-site will either be announced during the sessions or displayed at the information desk.

EVALUATION FORMS
Your comments are essential for helping us to make this event an even greater success in the future. Please complete the evaluation form provided during conference sessions and return it to our staff at the registration desk prior to your departure.

CME CREDITS (KOREAN PARTICIPANTS ONLY)
Physicians who require CME credits should write their attending times, license number, and signature on the list upon entering and leaving the conference.

Credits
Monday, May 9 Over 2 hours: 3 credits; over 3 hours: 4; over 4 hours: 6
Tuesday, May 10 Over 2 hours: 3 credits; over 3 hours: 4; over 4 hours: 6
Wednesday, May 11 Over 2 hours: 3 credits

SPEAKER PREVIEW ROOM
Speakers are requested to submit their presentation files at least 1 hour before their scheduled presentation time.

Location in front of Room 402, 4F
Operation Hours Monday, May 9 07:30-18:00
Tuesday, May 10 07:30-18:00
Wednesday, May 11 07:30-12:30
POSTER PRESENTATION

Location: Room 402
Mounting: Monday, May 9 07:30–10:45
Take down: Wednesday, May 11 before 12:30

PRESENTATION (Q&A)
Poster numbers starting with P1 will be presented in session 1, and starting with P2 in session 2. Presenting authors are requested to reserve time for Q&A in front of their poster panels during the designated presentation hours below:

Poster Session 1: Monday, May 9 18:00–19:30
Poster Session 2: Tuesday, May 10 18:00–19:30

AWARDS
The organizing committee is pleased to present the following awards.

BEST SHORT TALK & BEST POSTER AWARD
The awardees will be announced during the closing remarks and on the message board. These awards represent excellence and innovation and will be chosen by the Session Chairs and ICMN 2016 Scientific and Editorial Committee.

BRIGHT FOCUS FOUNDATION & KOREAN SOCIETY OF NEURODEGENERATIVE DISORDER TRAVEL FELLOWSHIP
Travel fellowship winners should visit the Secretariat Office (Room 403A) from May 9 at 12:00 to May 11 at 12:00 to receive the certificate and travel grant.

TRAVEL FELLOWSHIP WINNERS:
P1-A2 Yanan Qiao [China-Japan Friendship Hospital, China]
P1-C3 Karen Chiang [UCSD, USA]
P1-C4 Susanne Moosecker [Max-Planck-Institute for Psychiatry, Germany]
P1-C6 Hermeto Gerber [EPFL, Switzerland]
P1-D17 Gen Shihashi [Keio University School of Medicine, Japan]
P1-D4 Kyoungjoo Cho [Yonsei University Medical School, Korea]
P1-D7 Minyep Nahm [Hanyang University, Korea]
P1-G3 Lindsey Smith [University of Alabama at Birmingham, USA]
P1-H7 Ana Viegas [Center for Neuroscience and Cell Biology, Portugal]
P2-B13 Samantha Burnham [CSIRO, Australia]
P2-B3 Min Kim [King’s College London, UK]
P2-D19 Surbhi Jaiswal [National Institute of Immunology, India]
P2-D21 Su Min Lim [Hanyang University, Korea]
P2-D6 Younbok Lee [Kings College London, UK]
P2-F1 Myles Minter [University of Chicago, USA]
P2-H6 Ilshin Lee [Yonsei University College of Medicine, Korea]
P2-H7 Jaekwang Kim [Mayo Clinic College of Medicine, USA]

KOREAN SOCIETY OF NEURODEGENERATIVE DISORDER GRANT
The awardees will be announced during the closing remarks and on the message board. The award represents excellence and innovation and will be chosen by Korean Society of Neurodegenerative Disorder Scientific and Editorial Committee.
CONFERENCE INFORMATION

CONFERENCE CATERING

LUNCH
- Monday, May 9, 11:45-13:45
- Lu., Coex 1F
Lunch will be served at the above restaurant for all participants. Please make sure you have your lunch coupon with you and hand it to the server when you order. For your convenience, two menu options will be served.

LUNCHEON SYMPOSIUM
- Tuesday, May 10, 12:45-13:45
- Room 401
Sponsored by Mitsubishi Tanabe Pharma Korea Co., Ltd, the luncheon symposium will take place at the above time. Lunch boxes will be provided for all participants.

COFFEE BREAKS
Coffee will be served in the 4F lobby and poster display area.

SOCIAL EVENTS

WELCOME REMARKS
- Monday, May 9, 08:30-08:45
- Room 401
It will set the tone for the Conference with official remarks highlighting the unique cultural history of Korea and the Conference. All participants are encouraged to attend.

WELCOME RECEPTION
- Monday, May 9, 18:00-19:30
- 4F Lobby
The welcome reception will take place in the lobby area with refreshments and snacks, allowing the opportunity to mix and mingle with colleagues and your old & new friends while exploring the poster exhibits.

CLOSING REMARKS
- Wednesday, May 11, 12:15-12:30
- Room 401
Participants will review the highlights and achievements of the Conference and look ahead to the 5th ICMN in Stockholm in 2018. Awards will also be presented during the closing remarks.

GENERAL INFORMATION

INTERNET ACCESS
Complimentary Wi-Fi service is available in the session room and lobby by connecting to the "COEX Free Wi-Fi Zone."

TRANSPORTATION

COEX → Incheon International Airport

<table>
<thead>
<tr>
<th>Bus Number</th>
<th>Bus Stop</th>
<th>Travel Time</th>
<th>Fare</th>
</tr>
</thead>
<tbody>
<tr>
<td>#6006 (Standard Limousine)</td>
<td>Samseong Station Exit 7</td>
<td>60 min.</td>
<td>KRW 10,000</td>
</tr>
<tr>
<td>#6103 (Deluxe Limousine)</td>
<td>City Airport</td>
<td>65 min.</td>
<td>KRW 16,000</td>
</tr>
</tbody>
</table>

COEX → Gimpo International Airport

<table>
<thead>
<tr>
<th>Bus Number</th>
<th>Bus Stop</th>
<th>Travel Time</th>
<th>Fare</th>
</tr>
</thead>
<tbody>
<tr>
<td>#6104 (Deluxe Limousine)</td>
<td>City Airport</td>
<td>45 min.</td>
<td>KRW 7,500</td>
</tr>
</tbody>
</table>
CONFERENCE INFORMATION

USEFUL PHONE NUMBERS
Fire, Medical Emergencies 119
Police 112
Tourist Information 1330
Seoul Global Center 1688-0120
Seoul Global Center will help you with any questions about visiting Seoul.
[Business hours: Monday to Friday from 9-6 pm]

SECRETARIAT
The secretariat office will be open on-site during the conference in Room 403A, 4F, Coex.
Tel: +82-2-6000-7370

After ICMN 2016: People-X, Inc.
Tel: +82-2-557-8422, 8423
Fax: +82-2-566-6087
Email: info@icmn2016.org
Address: 1F Haeoreum Bldg., 16, Yeoksam-ro 17-gil, Gangnam-gu, Seoul 06246 Korea
EXHIBITION

OVERVIEW
A technical exhibition featuring neurodegenerative disease-related businesses and organizations will be held throughout the conference.

EXHIBITION PLACE 4F Lobby & Room 402
OPERATION HOURS
Monday, May 9 08:30-18:00
Tuesday, May 10 08:15-18:00
Wednesday, May 11 08:15-12:30

BOOTH LAYOUT

EXHIBITOR LIST

<table>
<thead>
<tr>
<th>Company</th>
<th>Booth No</th>
</tr>
</thead>
<tbody>
<tr>
<td>MYUNGIN PHARMACEUTICAL COMPANY</td>
<td>1-3, 11</td>
</tr>
<tr>
<td>EISAI KOREA INC.</td>
<td>7-10</td>
</tr>
<tr>
<td>YOO YOUNG</td>
<td>12-15</td>
</tr>
<tr>
<td>MITSUBISHI TANABE PHARMA KOREA CO., LTD.</td>
<td>4-5</td>
</tr>
<tr>
<td>KOREA BRAIN RESEARCH INSTITUTE (KOREA BRAIN BANK)</td>
<td>6</td>
</tr>
<tr>
<td>DAEWOONG BIO INC.</td>
<td>16</td>
</tr>
<tr>
<td>SAMJIN PHARM. CO., LTD.</td>
<td>17</td>
</tr>
<tr>
<td>KOREAN DRUG CO., LTD.</td>
<td>18</td>
</tr>
<tr>
<td>BORYUNG PHARM</td>
<td>19</td>
</tr>
</tbody>
</table>
EXHIBITION DIRECTORY

Myungin Pharmaceutical Company

Address: Myung-In Bldg 95, Banpo-daero, Seocho-Gu, Seoul, Korea (137-872)

Tel.: +82-2-588-0091
Fax.: +82-2-588-7111

Website: www.myunginph.co.kr

Description: Promising health and happiness of human being! A Company for the BEST! Under the business philosophy of "Best Quality medicine and Vigorous health", Myung-In Pharmaceutical Company, founded in 1985, has contributed to the promotion of public health and welfare by producing and providing indispensable pharmaceutical products through technical cooperation with overseas leading pharmaceutical companies such as in USA, Europe, Japan, and so on. We promise that we will do our best endeavor to reconstitute as one of the world best pharmaceutical company, which contributes to improve the quality of life and human health. Finally, we ask you to show a lot of interest and encourage us so that our homepage can providing useful information and can be the site for conversation.

Eisai Korea Inc.

Address: 10F Reveissant, 6, Bongeunsa-ro 86-gil, Gangnam-gu, Seoul, 06163, Korea

Tel.: +82-2-3451-5574
Fax.: +82-2-3451-5599

Website: www.eisaikorea.com
E-mail: h-oh@eisaikorea.com

Description: Satisfying diverse healthcare needs around the world. Around the world there are still many diseases for which no effective treatments exist and many patients who do not have adequate access to the medicines they need. As a global pharmaceutical company addressing these unmet medical needs, Eisai is committed to making contributions to better healthcare for patients and their families around the world through its business activities.

YOO YOUNG

Address: 93, [Bangbae] Hyoryeongro, Seocho-gu, Seoul, Korea

Tel.: +82-2-6202-7074
Fax.: +82-2-6202-7066

Website: www.yppharm.co.kr
E-mail: hschoi@yppharm.co.kr

Description: YooYoung Pharmaceutical is jumping up to be a leading pharmaceutical company on the global market, based on respect of life and consideration for mankind. While the 21st century continues to bring about change and developments at an unprecedented pace, YooYoung stands firmly in place as a company committed to the public’s health.
EXHIBITION DIRECTORY

<table>
<thead>
<tr>
<th>Company</th>
<th>Mitsubishi Tanabe Pharma Korea Co., Ltd.</th>
</tr>
</thead>
</table>
| Address | Seoul Office: 21F MMAA Bldg, 2806, Nambusunhwan-ro, Gangnam-gu, Seoul, 135-700, Korea
Hyangnam Factory: Pharmaceutical Industries Complex, Hyangnam-eup, Hwaseong-si, Gyeonggi Province, 80 2-gil |
| Tel. | +82-2-579-0121
Fax. | +82-2-579-0125 |
| Website | www.mt-pharma-korea.com
E-mail | ksh123485@mt-pharma-korea.com |
| Description | Mitsubishi Tanabe Pharma Korea (hereafter: MTPK) was founded in 1989 as a 100% subsidiary company of MTPC (Mitsubishi Tanabe Pharma Corporation) located in Japan. We, MTPK, have owned pharmaceuticals manufacturing plant certificated as KGPM site from MFDS (Ministry of Food and Drug Administration) in 1990 and have a sales activity of pharmaceuticals throughout South Korea. Our business has been expanded by selling cardiovascular or cerebrovascular products such as Herben®, Tanatril® and Novastan®. Furthermore, Radicut® under indication of ALS (Amyotrophic Lateral Sclerosis) was approved on 18 December 2015. |

<table>
<thead>
<tr>
<th>Company</th>
<th>Daewoong Bio INCORPORATED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>Bongeunsa-ro 114-gil 12, Gangnam-gu, Seoul, Korea</td>
</tr>
</tbody>
</table>
| Tel. | +82-2-550-8506
Fax. | +82-2-550-8745 |
| Website | www.daewoongbio.co.kr
E-mail | whitegom@daewoong-bio.co.kr |
| Description | Daewoong Bio Inc. an independent affiliate of the Daewoong Group based in Seoul, South Korea, was founded in 1983. Daewoong Bio produces cGMP complaint world-class products under quality guarantee systems. As a Key manufacturer, Daewoong Bio provides APIs for global distribution and to multinational corporations developing original products. |

<table>
<thead>
<tr>
<th>Company</th>
<th>KOREAN DRUG CO., LTD.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>34, Nonhyeon-ro 28-gil, Gangnam-gu, Seoul, Korea</td>
</tr>
</tbody>
</table>
| Tel. | +82-2-529-6100
Fax. | +82-2-529-6104 |
| Website | www.nicepharma.com |
| Description | Korean Drug Co. is a pharmaceutical leader with its original product Neuromed®(Oxiracetam), as well as being strong overall with an impressive lineup in CNS (Central Nervous System) products which is the main focus and specialization of the company. Also within their lineup is the Nootropics product group dealing with cerebrovascular disease, dementia, Parkinson’s and epilepsy. Korean Drug Co. constantly strives to contribute to the growth of the pharmaceutical market, with the constant and most important goal being to improve a patient’s quality of life. |
EXHIBITION DIRECTORY

<table>
<thead>
<tr>
<th>Company</th>
<th>Address</th>
<th>Tel.</th>
<th>Fax.</th>
<th>Website</th>
<th>E-mail</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boryung Pharm</td>
<td>Boryung Bldg, #66-21 Wonnam-dong, Chongro-ku, Seoul 110-750, Korea</td>
<td>+82-2-708-8000</td>
<td>+82-2-708-7928</td>
<td>www.boryung.co.kr</td>
<td></td>
<td>Boryung Pharmaceutical Company has continually invested heavily in research and development and made efforts to produce high-quality products to contribute what it can to liberate people from debilitating pain and diseases. Products such as our Gelfos M, Yongkaksan and Kyushin have been much loved by our customers so much that our company has emerged as the most familiar and trusted household brand in Korea.</td>
</tr>
<tr>
<td>Korea Brain research Institute (Korea Brain Bank)</td>
<td>61, Cheomdan-ro, Dong-gu, Daegu, 41068, Korea</td>
<td>+82-53-980-8114</td>
<td>+82-53-980-8239</td>
<td>www.kbri.re.kr</td>
<td>yhj749930@kbri.re.kr</td>
<td>As the only government-funded brain research organization, KBRI takes the lead in brain research network and is committed to advancing the understanding of the brain and nervous system, carrying out researches on brain diseases as well as neurobiology, brain engineering, and cognitive science by creating a fundamental technology for the brain convergence research through the integration of brain science with NT(Nano Technology), IT(Information Technology), and BT(Bio Technology).</td>
</tr>
</tbody>
</table>
SPONSORS

PLATINUM

Mitsubishi Tanabe Pharma

SILVER

GENERAL

KOREA GOVERNMENT SPONSORS

“This work was supported by the Korean Federation of Science and Technology Societies(KOFST) Grant funded by the Korean Government.”
THE 4th INTERNATIONAL CONFERENCE ON MOLECULAR NEURODEGENERATION

SCIENTIFIC PROGRAM
INVITED SPEAKERS
DAILY PROGRAM
INVITED SPEAKERS

Stanley H. Appel
Director, Houston Methodist Neurological Institute, Houston Methodist Hospital
Peggy and Gary Edwards Distinguished Endowed Chair for the Treatment and Research of ALS,
Chair, Department of Neurology at the Houston Methodist Hospital in Houston, TX
Professor of Neurology, Weill Cornell Medical College, USA

Stanley H. Appel, M.D. is the Director of Houston Methodist Neurological Institute, Chair of Neurology and the Edwards Distinguished Chair for ALS Research. He was previously the James B. Duke Professor of Medicine at Duke University and Chair of Neurology at Baylor College of Medicine. Dr. Appel received his Bachelor Degree from Harvard University and his MD from Columbia College of Physicians and Surgeons. He is Director of the MDA/ALS Research Clinical Center. Dr. Appel is the author of 15 published books and over 410 articles. He has received numerous awards for his accomplishments in Neurology and Biochemistry, including the Gold Medal Award from Columbia College of Physicians and Surgeons, the Sheila Essey Award from the American Academy of Neurology, the Norris Award from the Alliance of ALS/MND Associations, and the Houston Academy of Medicine John P. McGovern Complet Physicist Award.

Guojun Bu
Professor, Mayo Clinic Jacksonville, USA

Guojun Bu, Ph.D., is the Mary Lowell Leary Professor of Medicine at Mayo Clinic Jacksonville and an Associate Director of the Mayo Clinic Alzheimer’s Disease Research Center. Prior to joining Mayo Clinic in 2010, he was a Professor of Cell Biology and Neuroscience at Washington University in St. Louis. Dr. Bu received his B.S. degree in biology from Beijing Normal University and his Ph.D. degree in biochemistry from Virginia Tech. He is a leader in the field of apoE and apoE receptors, which play critical roles in brain lipid transport, synaptic function, and Aβ metabolism in Alzheimer’s disease. His laboratory is also exploring the pathogenic mechanisms of several other Alzheimer risk genes including TREM2 and ABCA7. Dr. Bu has received several honors and awards including the Zenith Fellows Award from the Alzheimer’s Association and the Established Investigator Award from the American Heart Association. He serves as a Co-Editor-in-Chief of the journal Molecular Neurodegeneration.

Mark R. Cookson
Senior Investigator, Laboratory of Neurogenetics, National Institute on Aging, NIH, USA

My laboratory at the intramural program at NIH has focused on the molecular biology of Parkinson’s disease for the past twelve years. We have a range of interests, particularly around the kinase LRRK2 related to dominant Parkinson’s disease. We have also always worked on recessive PD genes, particularly DJ-1 with some minor work on PINK1/parkin. The general thrust of these experiments has been related to oxidative stress and mitochondrial function and, to this end, we have moved recently from using mainly cell based models into more intact systems, predominantly knockout rodents. My laboratory has used a variety of large-scale approaches to answer these questions with a recent emphasis on using RNA-Seq and proteomics.
Ted M. Dawson

Director, Institute for Cell Engineering, Leonard and Madlyn Abramson Professor in Neurodegenerative Diseases, Johns Hopkins University School of Medicine, USA

Dr. Dawson is the Leonard and Madlyn Abramson Professor in Neurodegenerative Diseases and Director of the Institute for Cell Engineering at the Johns Hopkins University School of Medicine. Dr. Dawson's honors include the Derek Denny-Brown Young Neurological Scholar Award, the Paul Beeson Physician Faculty Scholar Award, and the Santiago Grisolia Medal and a Javits Neuroscience Investigator Award. He was elected to the Association of American Physicians and he is a Fellow of the American Association for the Advancement of Science. He elucidated the molecular mechanisms by which NO kills neurons through activation of poly(ADP-ribose) polymerase (PARP) and release of apoptosis inducing factor (AIF) via PAR polymer and discovered Parthanatos. Dr. Dawson has been at the forefront of research into the biology and pathobiology of mutant proteins linked to familial Parkinson's disease. These studies are providing novel opportunities for therapies aimed at preventing the degenerative process of PD and other neurodegenerative disorders.

Li Gan

Senior Investigator, Gladstone Institutes, University of California, San Francisco, USA

Dr. Gan is a Senior Investigator at Gladstone Institute of Neurological Disease and an Associate Professor of Neurology at UCSF, where she has joint appointments in the Neuroscience and Biomedical Science graduate programs. Dr. Gan's research focuses on molecular pathways in Alzheimer's disease, including inflammation and mechanisms regulating the clearance of toxic proteins that accumulate in AD brains. Dr. Gan serves on the editorial board of Journal of Biological Chemistry and is a regular referee of leading scientific journals. She also serves as referee for several government and private grant agencies, including National Institute of Health. Dr. Gan's work is published in leading scientific journals, including Neuron, Nature Medicine, and Cell Stem Cell. In 2015, Dr. Gan received the Alzheimer’s Association’s Inge Grundke-Iqbal Award, which is granted to the senior author of the most impactful study published in Alzheimer’s research during a two-year period.

P. St George-Hyslop

Professor, University of Cambridge, UK, University of Toronto, Canada

Work in my laboratory has focused on understanding the pathobiology of human neurodegenerative diseases using a combination of approaches including gene discovery, functional genomics, structural biology and animal modelling. Most recently, we have begun to work on the biology of selected RNA binding proteins which undergo phase transition from monodispersed to liquid droplet to reversible/irreversible hydrogels.
INVITED SPEAKERS

Alison M. Goate
Willard T.C. Johnson Research Professor of Neurogenetics
Director, Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, USA

Dr. Alison Goate started working on Alzheimer’s disease genetics in 1987 as a postdoctoral fellow with Dr. John Hardy at ICL. Since then she has been part of many gene finding teams that have successfully identified disease causing variants for AD and FTD. Whilst working with Dr. Hardy she reported the first mutation to cause familial Alzheimer’s disease. In 1992 she moved to Washington University. Among her most significant findings there, was the identification of the presenilin 1 mutation in the Colombian kindreds now being studied in the API clinical trials. Dr. Goate is a leader in the examination of late onset AD genetics including the use of endophenotypes. She has demonstrated that LOAD families can carry PSEN mutations with reduced penetrance. Last year her group reported missense variants in PLD3 as a risk factor for AD and collaborated with John Hardy in the identification of Trem2 as an AD risk factor. Dr. Goate has received the Potamkin Award and the MetLife Award for her research on AD and was elected a fellow of AAAS in 2012. In 2015 she received the Khalid Iqbal Lifetime Achievement Award from the Alzheimer’s Association. Alison moved to the Icahn School of Medicine at Mount Sinai to lead the Ronald M Loeb Center for Alzheimer’s Disease in 2015.

Todd E. Golde
Director, Center for Translational Research in Neurodegenerative Disease
Professor, Department of Neuroscience, University of Florida, USA

Dr. Golde is a Professor of Neuroscience at the University of Florida, where he directs the Center for Translational Research in Neurodegenerative Disease and the NIH funded 1 Florida Alzheimer’s Disease Research Center. After beginning his independent career at University of Pennsylvania, he moved to Mayo Clinic Florida where he rose from Assistant Professor of Pharmacology to both Professor of Neuroscience and chair of Mayo Clinic’s internationally recognized Department of Neuroscience. Dr. Golde has published over 200 peer-reviewed manuscripts which have been cited over 18,000 times. His scientific honors include Paul Beeson Faculty, Alzheimer’s Association Zenith, and MetLife Foundation Awards. He is an active advocate for AD and neurodegenerative disease research at the state, national, and international levels, serving on two state boards that provide input regarding AD initiatives in the State of Florida, the national medical and scientific advisory boards for the Alzheimer’s Association, BrightFocus Foundation, and AFAR.

David M. Holtzman
Andrew and Gretchen Jones Professor and Chair of Neurology, Washington University School of Medicine, USA

David Holtzman received his BS and MD from Northwestern University followed by a Neurology residency at UCSF. He did post-doctoral research at UCSF and moved to Washington University in 1994 where he is currently Professor and Chair of Neurology, scientific director of the Hope Center for Neurological Disorders, and Associate Director of the Knight ADRC. Some of his lab’s accomplishments include showing in part how apolE4 contributes to AD, how synaptic activity and sleep affect amyloid-β [Aβ] levels dynamically in vivo, developing a promising anti-Aβ antibody now in 3 phase III trials and an anti-tau antibody in clinical trials. He has received a number of honors including being a recipient of a Paul Beeson Physician Faculty Scholar award in Aging research, the Potamkin prize from the American Academy of Neurology for research on Alzheimer’s disease, the MetLife award for Alzheimer’s disease research, a MERIT award from the NIA, election to the National Academy of Medicine of the National Academy of Sciences, an alumni merit award from the Northwestern Feinberg School of Medicine, being appointed to the National Advisory council of the NINDS and the NIH council of councils, the Chancellor’s award for innovation and entrepreneurship and the Carl and Gerty Cori award from Washington University and being elected Fellow of the AAAS. Holtzman has trained over 50 graduate students, post-doctoral fellows, and physician-scientists, many of whom have gone on to successful careers in academia and industry.
INVIteD sPeAKers

Seung Hyun Kim
Professor, Hanyang University Hospital, Korea

Dr. Seung Hyun Kim is a professor in the Department of Neurology and ALS clinic of Hanyang University Hospital, Seoul and director of the Korean NIH sponsored stem cell therapy center. He is currently the president of Korean Society of Neurodegenerative Disorder and local host chairman of the 4th IC MN. He earned his MD degree in medicine and PhD in Neuroanatomy at Hanyang University. From 1999 to 2001, Dr. Kim worked at Baylor College of Medicine, Houston in the field of ALS research as a postdoc fellow under the supervision of Prof. Stanley Appel. Since 2001, he has worked in the field of ALS and neurodegenerative disorders and developed JPI-289, a novel PARP inhibitor, for treatment of acute ischemic stroke, currently in Phase II clinical trials. Last year, autologous BM MSC treatment for ALS was approved as an orphan drug, which was conducted by a Korean NIH research project. He put the autologous stem cell therapy into clinical practice to treat ALS and is now conducting translational research in the field of rare neurodegenerative diseases for the development of personalized medicine based on the unique genetic make-up of Korean and Asian populations with Samsung Medical Center, Corestem, KIST and Seoul National University.

Jinhyun Kim
Center Director, Principal Investigator, Korea Institute of Science & Technology Center for Functional Connectomics, Korea

Jinhyun [Unny] Kim, Neuroscientist, received her B.S and M.S. in Biology at Sung Kyun Kwan University, Korea, in 1995 and 1997, respectively. She started to study neuroscience and received her PhD at Max-Planck-Institute for medical research in Heidelberg, Germany in 2001. After her PhD, she did her 5-years-postdoctoral work at National Institutes of Health, USA, (2002-2007) and worked as a Research Specialist at Janelia Farm Research Campus, Howard Hughes Medical Institute, USA, (2008-2010). Since 2011, she is appointed by Korea Institute of Science and Technology participating in ‘World-Class-Institute’ launched by Korean government. In 2014 she has been appointed as a director of Center for Functional Connectomics at the KIST.

Jungsu Kim
Assistant Professor, Department of Neuroscience, Mayo Clinic, USA

Dr. Kim graduated Summa Cum Laude in 2000 from Pohang University of Science & Technology in South Korea with a bachelor’s degree in life science. He received his Ph.D. in 2007 under the guidance of Dr. Todd Golde at Mayo Clinic and further training in the laboratory of Dr. David Holtzman at Washington University. Dr. Kim’s laboratory is interested in understanding the molecular and cellular basis of neuronal dysfunction in Alzheimer’s disease and other neurodegenerative diseases. One of their research goals is to develop therapeutic strategies targeting brain lipid-regulating proteins, such as ApoE, LDLR, and ABCA1. In addition, his lab uses a combination of genomics, proteomics, and biochemical approaches to identify novel microRNAs involved in neurodegeneration, synaptic plasticity, and brain lipid metabolism.
InViTeD sPeAKers

Seung-Jae Lee
Professor, Seoul National University College of Medicine, Korea

Dr. Lee started his research group at the Parkinson’s Institute in Sunnyvale, CA in 2000, where he developed a research program for the study of pathophysiology of alpha-synuclein. He then moved to Konkuk University in Seoul, Korea in 2006, where he continued his work on alpha-synuclein and performed a series of studies on alpha-synuclein secretion and its roles in aggregate propagation and neuroinflammation. In 2015, Dr. Lee moved to Seoul National University in Seoul, Korea. While he continues the work on alpha-synuclein and Lewy body diseases, Dr. Lee is currently expanding the spectrum of his research program that now includes other neurodegenerative diseases-linked proteins, such as tau and TDP-43.

C. Justin Lee
Director of Center for Glia-Neuron Interaction, Brain Science Institute, Korea Institute of Science and Technology, Korea

Dr. C. Justin Lee received Bachelor’s degree in Chemistry at The University of Chicago (1990) and Master’s and PhD degrees in Physiology and Cellular Biophysics at Columbia University (2001). Since the year 2004 when he first joined KIST after 3 years of postdoctoral fellowship at Emory University, he has been studying the subject of neuron and glia interactions in the brain. He has been the major driving force for establishment and enhancement of Korean neuroscientific research by setting up the Center for Neural Science at KIST (2005) and establishing a new neuroscience graduate program at the University of Science and Technology (2005). In 2010 he established a new center as a part of the World Class Institute Program, Center for Functional Connectomics. In Feb. 2010 his research team published the highly recognized research article in Cancer research on caffeine’s inhibitory action and mechanism for brain cancer growth and invasion. In Nov. of the same year his team published a seminal research article in Science on channel-mediated tonic GABA release from cerebellar glial cells. In September of 2012, he published a ground-breaking paper describing the glutamate release mechanism in astrocyte in Cell. In 2014, he extended his research to Alzheimer’s disease by publishing his study in Nature Medicine on the causes of memory loss as the reactive astrocytes synthesizes and releases GABA to cause memory loss in Alzheimer’s disease. With these publications along with others he has greatly increased the visibility of Korean neuroscience in the world’s scientific community.

Seung-Jae Lee
Professor, Seoul National University College of Medicine, Korea

Professor Inhee Mook-Jung has been working on molecular pathogenesis of Alzheimer’s disease (AD). Her major interests are (1) how does mitochondrial dysfunction contribute to AD pathogenesis, (2) how does glucose metabolism change affect cellular physiology including sugar modification on protein, (3) how do neuron and glia talk each other to maintain neuronal activity and brain circuits and (4) identification of blood biomarker for AD. To examine these phenomena, in vivo analysis of changes in brain pathology including Abeta plaques and glial cells using two photon microscopy in various AD animal models was challenged. Also, massive proteomics and bioinformatics were used to examine the specific proteins and genes for AD pathophysiology. To identify blood biomarker for AD, the plasma from PiB-PET positive and negative subjects were collected and analyzed. She has been published more than 130 SCI papers and served as editor including Journal of Alzheimer’s disease and Experimental Molecular Medicine.
Leonard Petrucelli
Chair and Ralph B. and Ruth K. Abrams Professor, Mayo Clinic Jacksonville, USA

My laboratory has been at the forefront of research investigating the cellular mechanisms that cause neurodegeneration in diseases characterized by abnormal protein aggregation, such as frontotemporal lobar degeneration (FTD) and amyotrophic lateral sclerosis (ALS). Given hexanucleotide (G4C2) repeat expansion in C9orf72 is now known to be the most common cause of ALS and FTD-TDP, my laboratory has sought to understand how C9orf72 mutations contribute to disease. In our recently published manuscripts, we present evidence that the RNA structure of sense and antisense G4C2 transcripts may cause neurodegeneration by two means: via their accumulation into discrete structures in the nucleus, termed RNA foci, and by serving as a template for the synthesis of aggregation-prone “c9RAN proteins” by repeat-associated non-ATG (RAN) translation (Neuron, Acta Neuropathologica). In other studies, we demonstrate aberrant methylation of histone 3 at lysine 9, which is detectable in brain tissue, fibroblasts and blood of C9orf72 mutation carriers, mediates C9orf72 haploinsufficiency. We report discovery of poly(GP) c9RAN proteins as a biomarker in the cerebrospinal fluid of ALS patients with C9orf72 mutations and lead small molecules to target r(G4C2)-associated defects in c9FTD/ALS (Neuron). Also, we made a mouse model of C9orf72 mutation carriers that exhibited the neuropathological and behavioral defects seen in human patients, including that of TDP-43 pathology (Science).
INVITED SPEAKERS

Laura P.W. Ranum
Director, Center for NeuroGenetics, Professor of Molecular Genetics and Microbiology, University of Florida, USA

Laura Ranum, Ph.D. uses gene discovery and mouse models to understand neurologic disease. Her laboratory identified the myotonic dystrophy type 2 and spinocerebellar ataxia type 8 (SCA8) expansion mutations and developed mouse models of these diseases. In 2006, her group demonstrated the SCA8 expansion produces RNAs in both directions and in 2011 discovered “repeat associated non-AUG (RAN) translation”, a novel form of translation in which expansion mutations express proteins in all three reading frames without the canonical start codon. Additionally her group showed that RAN proteins accumulate in SCA8 and DM1 patient tissues. Since that time, her group and other groups have shown RAN proteins also accumulate in C9orf72 ALS/FTD, FXTAS and Huntington’s disease. Dr. Ranum’s group is now focused on understanding the mechanisms of RAN translation and the impact of RAN proteins in neurological disease.

Takaomi C. Saido
Senior Team Leader, RIKEN Brain Science Institute, Japan

Most interested in proteolytic aspects of Alzheimer’s disease. Discovered AβN3[pE] (Neuron, 1995), identified neprilysin as a major Aβ-degrading enzyme (Nat Med, 2000; Science, 2001), found somatostatin as a neprilysin activator (Nat Med, 2005), indicated importance of Aβ43 (Nat Neurosci, 2011) and generated single App knock-in mouse models of Alzheimer’s disease, which overproduce Aβ42 without overexpressing APP (Nat Neurosci, 2014). The mouse models are being used by more than 140 laboratories all over the world.

Sangram S. Sisodia
Thomas Reynolds Sr. Family Professor of Neurosciences, University of Chicago, USA

Dr. Sisodia’s research has focused on understanding the cellular and molecular biology of the amyloid precursor protein (APP) and presenilins. His group was amongst the first to develop and characterize mice expressing FAD-linked variants of PS1 and APP and has used these models to understand the impact of environmental enrichment and exercise in modulating Aβ deposition and adult neurogenesis. Dr. Sisodia received the Potamkin Prize for Alzheimer’s Disease Research, the Metropolitan Life Foundation Award for Medical Research (1998), and delivered the Presidential Special Lecture at the Annual Society for Neuroscience Meeting in 2001 and 2006. He was inducted into the Johns Hopkins Society of Scholars [2007], Fellow of AAAS [2008], Foreign Fellow of the National Academy of Sciences, India [2010] and the Spanish Royal Academy of Sciences [2011]. He has served on the Editorial Boards of eight journals, including Neuron and Cell and is a member of the Dana Alliance for Brain Initiatives.
INVITED SPEAKERS

Bart De Strooper

Professor, VIB Center for the Biology of Disease, Leuven, Center for Human Genetics at the University of Leuven, KU Leuven, University College London, Belgium

Bart De Strooper’s scientific work is focused on the understanding of the fundamental mechanisms that underlie Alzheimer’s and Parkinson’s disease. His major findings are the role of presenilin/gamma-secretase in the proteolysis of the amyloid precursor protein and Notch, the role of PARL in mitochondrial apoptosis, and the decrease of microRNA132 in Alzheimer Disease.

He received his M.D. in 1985 and Ph.D. in 1991 from KU Leuven. He did a postdoc in the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, in the laboratory of Carlos Dotti.

Together with Christian Haass, Bart De Strooper received the Potamkin Award of the American Academy of Neurology in 2002. Other awards include the 2003 Alois Alzheimer Award of the Deutscher Gesellschaft für Gerontopsychiatrie und Psychotherapie, the Joseph Massin Prize in 2005 for fundamental biomedical sciences, awarded by the FWO Flanders every 5 years, and the 2008 Metlife Foundation Award for medical research.

Rudolph Tanzi

Vice-Chair, Neurology, Massachusetts General Hospital, Director, Genetics and Aging Research Unit, Massachusetts General Hospital, Professor, Neurology, Harvard Medical School, USA

Dr. Rudolph Tanzi is the Vice-Chair of Neurology and Director of the Genetics and Aging Research Unit at Massachusetts General Hospital, and serves as the Joseph P. and Rose F. Kennedy Professor of Neurology at Harvard Medical School. Dr. Tanzi co-discovered three of the first Alzheimer’s disease genes and has identified several others in the Alzheimer’s Genome Project, which he directs. He also discovered the Wilson’s disease gene and participated in the discovery of several other neurological disease genes. Most recently, he has used AD genes to create a three-dimensional human stem cell-derived neural culture system that recapitulates AD plaque and tangle pathology. Using this system, Dr. Tanzi is also developing therapeutics for AD including gamma secretase modulators and metal chaperones (PBT; Prana) to lower beta-amyloid and tangle burden in the brain. Dr. Tanzi has published nearly 500 research papers and has received the highest awards in his field, including the Metropolitan Life Foundation Award and Potamkin Prize. Most recently, he was named to TIME magazine’s 2015 list of TIME100 Most Influential People in the World. He also received the 2015 Smithsonian American Ingenuity Award, the top national award for invention and innovation. He co-authored the popular trade books “Decoding Darkness”, New York Times Bestseller, “Super Brain”, and “Super Genes” He was named by GQ magazine as a Rock Star of Science, and in his spare time, has played keyboards with the band Aerosmith.

Taisuke Tomita

Professor, Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan

Dr. Taisuke Tomita is a Professor of Laboratory of Neuropathology and Neuroscience at Graduate School of Pharmaceutical Sciences, the University of Tokyo. He received his Ph.D. from the University of Tokyo where he worked on the pathobiology of presenilin in Alzheimer disease. As a faculty member of Graduate School of Pharmaceutical Sciences, he has been working on the structure-function relationships of the gamma-secretase. From 2014, he has started his own laboratory as a full professor and continued research on the proteolytic mechanisms related to Alzheimer disease and other neuropsychiatric diseases using enzymology, biochemistry, molecular cell biology and chemical biology. Dr. Tomita has been awarded the Research Award from Japan Society for Dementia Research and 48th Erwin von Bälz prize.
Invited Speakers

Robert Vassar
Professor, Northwestern University, USA

Robert Vassar, Ph.D., is Professor of Cell and Molecular Biology at the Feinberg School of Medicine, Northwestern University. He received his Ph.D. in Molecular Genetics and Cell Biology from the University of Chicago in 1992 working in the lab of Dr. Elaine Fuchs where he modeled human epidermal diseases in transgenic mice using reverse genetic approaches. He did his post-doctoral research from 1992 to 1996 in the laboratory of Dr. Richard Axel at Columbia University, where he elucidated the organization of odorant receptors in the olfactory system, thus determining the olfactory topographic map in the brain that permits odor identification. This work contributed to the award of the Nobel Prize to Axel and Buck in 2004. Having a personal interest in Alzheimer’s disease (his mother died of the disorder), Dr. Vassar joined the biotechnology company Amgen in 1996 as a Research Scientist in the Neuroscience Department, where he co-discovered the β-secretase enzyme, BACE1, a prime Alzheimer’s disease drug target for which inhibitors are currently being tested in clinical trials. After leaving Amgen in 2001, Dr. Vassar joined the faculty of the Feinberg School of Medicine, Northwestern University, Chicago, where he continues to investigate the normal and pathological roles of BACE1 and mechanisms of Alzheimer’s disease pathogenesis.

Huaxi Xu
Professor, Neurodegenerative Disease Program, Center for Neuroscience, Stem Cell and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, USA, (Adjunct) Professor, Institute of Neuroscience, Xiamen University, China

Dr. Xu started his career studying intracellular trafficking and proteolytic processing of membrane proteins, as a PhD student trained jointly by Dennis Shields and Gunter Blobel. As a postdoctoral fellow in Paul Greengard’s lab at The Rockefeller University, he conducted research on signal transduction in the neural system. After becoming a PI 18 years ago and having published >120 papers with a total impact factor of >850 (H-index>50), his research has focused on the molecular and cellular mechanisms of Alzheimer’s disease (AD) with emphasis on regulation of APP processing/trafficking, synaptic neurotoxicity of Aβ, tau phosphorylation/cleavage, and NFT formation. Recently, his laboratory has established themselves in the areas of neuronal function/dysfunction and cell death, identification of new genes and molecular pathways related to the pathogenesis of neurodegenerative diseases including not only AD but also Down syndrome and tauopathies e.g., Progressive Supranuclear Palsy; and development of animal models for studying neuronal functions/dysfunctions.

Riqiang Yan
Professor, Cleveland Clinic Lerner Research Institute, USA

By coupling bioinformatic approach with enzymatic characterization, Dr. Yan led the discovery of BACE1 as Alzheimer’s β-secretase and reported this finding in Nature in 1999. After this original discovery, his lab conducted extensive cellular and molecular characterizations of both BACE1 and BACE2 and reported in multiple studies on specific cleavages of APP by BACE1 and BACE2. His lab has been one the first to demonstrate how BACE1 and BACE2 differentially cleave APP. By using the BACE1-null mouse models, Dr. Yan reported the role of BACE1 in hypomyelination observed in both peripheral and central nervous systems, in spontaneous epileptic seizures, and in the control of hippocampal astrogensis and neurogenesis. His lab has also discovered that neuregulin-1, neuregulin-3, Jag1 and Jag2 are BACE1 physiological substrates. In addition, his lab reported the discovery that reticulon (RTN) proteins as BACE1 negative modulators and developed a mouse model for study Alzheimer’s dystrophic neurites in mice.
Hui Zheng

Professor and Director, Baylor College of Medicine, USA

Dr. Zheng received her Ph.D. and postdoc training from Baylor College of Medicine in Houston, Texas. In 1991, she joined Merck Research Laboratories where she began her research on Alzheimer’s disease using mouse genetic approaches. Dr. Zheng returned to Baylor in 1999 and currently is Huffington Foundation Endowed Chair and Director of the Huffington Center on Aging. Dr. Zheng is known for her original and systematic approaches, and her work has revealed novel insights in the genetic interactions and signaling pathways relevant to Alzheimer’s disease. Dr. Zheng was awarded the New Scholars Award on Aging from the Ellison Medical Foundation and the Zenith Award from the Alzheimer’s Association. She was a member and chair of the Neuroscience of Aging Review Committee from 2003-2008. Currently she serves on the Cellular & Molecular Biology of Neurodegeneration (CMND) Study Section at the U.S. National Institutes of Health and Alzheimer’s Association Medical & Scientific Advisory Council.
DAILY PROGRAM

Monday, May 9

07:30 REGISTRATION

08:30 WELCOME REMARKS
Seung Hyun Kim (Chairman, Local Organizing Committee of ICMN 2016)
Guojun Bu (Organizer, Co-Editor-in-Chief, Molecular Neurodegeneration)

08:45 ~ 10:15 **SESSION 1: GENETICS OF NEURODEGENERATION**
Chair Guojun Bu (Mayo Clinic Jacksonville, USA)

01 A COMMON ALLELE LOWERS S1P1 EXPRESSION IN CELLS OF THE MYELOID LINEAGE AND DELAYS AGE AT ONSET FOR AD
08:45 Alison Goate (Icahn School of Medicine at Mount Sinai, USA)

02 PATHWAYS TO PARKINSONISM
09:15 Mark R. Cookson (National Institute on Aging, National Institutes of Health, USA)

03 LIQUID–LIQUID DROPLET AND HYDROGEL PHASE TRANSITIONS OF RNA BINDING PROTEINS IN NEURODEGENERATION
09:45 Peter St. George-Hyslop (University of Cambridge, UK, University of Toronto, Canada)

10:15 ~ 10:45 COFFEE BREAK

10:45 ~ 12:45 **SESSION 2: CLINICAL AND BIOMARKER STUDIES**
Chair Seol-Heui Han (Konkuk University Hospital, Korea)

04 DOMINANTLY INHERITED ALZHEIMER NETWORK (DIAN)
10:45 John C. Morris (Washington University, USA)

05 TREM2-MEDIATED EARLY MICROGLIAL RESPONSE LIMITS DIFFUSION AND TOXICITY OF AMYLOID PLAQUES
11:15 David M. Holtzman (Washington University, USA)

06 SUPPRESSING NEUROINFLAMMATION: A KEY TO THERAPY IN AMYOTROPHIC LATERAL SCLEROSIS
11:45 Stanley H. Appel (Houston Methodist Hospital, Weill Cornell Medical College, USA)

07 MOLECULAR BIOLOGICAL MARKERS PREDICTING THE PROGNOSIS OF AUTOLOGOUS MSC THERAPY IN ALS
12:15 Seung Hyun Kim (Hanyang University Hospital, Korea)

12:45 ~ 13:45 LUNCH
Monday, May 9

13:45 ~ 15:15 **SESSION 3: EMERGING SYSTEMS FOR NEURODEGENERATION RESEARCH**
Chair: Robert Vassar (Northwestern University, USA)

08 NEURON-GLIA CROSSTALK UNDER ALZHEIMER’S DISEASE CONDITION
13:45 Inhee Mook-Jung (Seoul National University, Korea)

09 MOUSE/HUMAN NEURON BRAIN CHIMAERA AS A NEW MODEL FOR THE STUDY OF AD
14:15 Bart De Strooper (VIB Center for the Biology of Disease, KU Leuven, Belgium)

010 mGRASP FOR MAPPING MAMMALIAN SYNAPTIC CIRCUIT AT MULTIPLE SCALES
14:45 Jinhyun Kim (Korea Institute of Science and Technology, Korea)

15:15 ~ 15:45 **COFFEE BREAK**

15:45 ~ 17:15 **SHORT TALK 1**
Chair: Henrietta Nielsen (Stockholm University, Sweden)

030 ATAXIN-1, SPINOCEREBELLAR ATAXIA TYPE 1 PROTEIN, REGULATES BACE1 EXPRESSION AND HIPPOCAMPAL NEUROGENESIS IN THE CEREBRUM
15:45 Jaehong Suh (Harvard Medical School, Massachusetts General Hospital, USA)

031 THE ARGINYLATION BRANCH OF THE N-END RULE PATHWAY AS POSITIVE REGULATOR OF AUTOPHAGIC FLUX AND PROTEOTOXIC PROTEIN DEGRADATION
16:00 Jeeyoung Lee (Seoul National University, Korea)

032 REGULATION OF PRE- AND POSTSYNAPTIC DOPAMINERGIC BIOMARKERS IN A MPTP MACAQUE MODEL OF PARKINSON DISEASE
16:15 Jinbin Xu (Washington University, USA)

033 DEFINING THE EFFECTS OF PATHOLOGICAL TDP-43 USING NEW TRANSGENIC MOUSE MODELS
16:30 Adam K. Walker (Macquarie University, Australia)

034 PUR-ALPHA AMELIORATES FUS TOXICITY THROUGH CYTOPLASMIC STRESS GRANULE DYNAMICS REGULATION
16:45 Udai Pandey (University of Pittsburgh Medical Center, USA)

17:15 ~ 18:00 **PANEL DISCUSSION 1: BIOMARKERS AND THERAPEUTIC TARGETS**
Panels: David M. Holtzman (Washington University, USA)
 Todd E. Golde (University of Florida, USA)

18:00 ~ 19:30 **POSTER SESSION 1 & WELCOME RECEPTION**
DAILY PROGRAM
Tuesday, May 10

07:30 REGISTRATION

08:15-10:15 SESSION 4: MECHANISMS OF ALZHEIMER’S DISEASE: MOLECULAR PATHWAYS
Chair: Hui Zheng (Baylor College of Medicine, USA)

011 BACE1 REGULATES THE FATE DETERMINATION OF NEURAL STEM CELLS DURING MOUSE EARLY DEVELOPMENT
08:15 Riqiang Yan (Cleveland Clinic Foundation, USA)

012 MODULATION OF AMYLOID DEPOSITION BY THE MICROBIOME
08:45 Sangram Sisodia (University of Chicago, USA)

013 EFFECT OF γ-SECRETASE INHIBITOR AND MODULATOR ON THE CONFORMATION OF PRESENLIN 1
09:15 Taisuke Tomita (University of Tokyo, Japan)

014 CENTRAL AND PERIPHERAL APOE IN COGNITION AND ALZHEIMER’S DISEASE
09:45 Guojun Bu (Mayo Clinic Jacksonville, USA)

10:15 ~ 10:45 COFFEE BREAK

10:45 ~ 12:45 SESSION 5: MECHANISMS OF AD-RELATED DEMENTIA
Chair: Yong-Keun Jung (Seoul National University, Korea)

015 BIOLOGY OF TIME: HUMANIZATION OF THE ENTIRE MURINE TAU GENE FOR A BETTER MODEL OF ALZHEIMER’S DISEASE
10:45 Takaomi C. Saido (RIKEN Brain Science Institute, Japan)

016 PROGRAMULIN IN AD AND FTD
11:15 Li Gan (Gladstone Institute, University of California, USA)

017 ROLE OF THE AUTOPHAGY AND LYSOSOMAL PATHWAY IN DISEASES OF TAUOPATHY
11:45 Hui Zheng (Baylor College of Medicine, USA)

018 ANTI-AGING TREATMENTS SLOW PROPAGATION OF SYNUCLEINOPATHY BY RESTORING LYSOSOMAL FUNCTION
12:15 Seung-Jae Lee (Seoul National University, Korea)

12:45 ~ 13:45 LUNCHEON SYMPOSIUM- MITSUBISHI TANABE PHARMA
Chair: Seung Hyun Kim (Hanyang University Hospital, Korea)

029 MECHANISM OF ALS AND THE CLINICAL NEUROPROTECTION IN JAPAN
12:45 Koji Abe (Okayama University, Japan)
TUESDAY, MAY 10

SESSION 6: NOVEL PATHOGENIC MECHANISMS IN NEURODEGENERATION

Chair: Jae-Hong Lee (University of Ulsan, Korea)

13:45 ~ 15:15

019 DYSTROPHIC NEURITES ARE SITES OF MICROTUBULE DISRUPTION, BACE1 ELEVATION, AND INCREASED Aβ GENERATION: THE POTENTIAL ROLE OF Aβ OLIGOMERS

13:45 Robert Vassar (Northwestern University, USA)

020 NOVEL INSIGHTS INTO THE PATHOGENESIS OF PROGRESSIVE SUPRANUCLEAR PALSY AND OTHER TAUOPATHIES

14:15 Huaxi Xu (Sanford Burnham Prebys Medical Discovery Institute, USA)

021 ROLES OF NON-CODING RNAs AND APOE IN ALZHEIMER’S DISEASE

14:45 Jungsu Kim (Mayo Clinic Jacksonville, USA)

15:15 ~ 15:45 COFFEE BREAK

15:45 ~ 17:15 **SHORT TALK 2**

Chair: Min Jae Lee (Seoul National University, Korea)

035 IMPACT OF SEX AND APOE4 ON CEREBRAL AMYLOID ANGIOPATHY IN ALZHEIMER’S DISEASE

15:45 Takahisa Kanekiyo (Mayo Clinic Jacksonville, USA)

036 HIGHLY ACCURATE BLOOD-BASED DIAGNOSIS OF ALZHEIMER’S DISEASE WITH AMYLOID β OLIGOMER IN NEURONAL EXOSOME

16:00 Ji Yoon Kang (Korea Institute of Science and Technology, Korea)

037 MODELLING ALZHEIMER’S PATHOLOGY IN DOWN SYNDROME USING 2D AND ORGANOID FROM ISOGENIC INDUCED PLURIPOTENT STEM CELLS AND CLINICALLY STRATIFIED COHORTS

16:15 Dean Nizetic (Nanyang Technological University, Singapore)

038 A NEW CHEMOGENETIC SYSTEM FOR MODELING CIRCUIT DYSFUNCTION IN NEURODEGENERATIVE DISEASE

16:30 Joanna Jankowsky (Baylor College of Medicine, Australia)

039 BRAIN PACEMAKER IN MEDIAL PREFRONTAL CORTEX ENHANCES MEMORY AND HIPPOCAMPAL NEUROPLASTICITY IN THE AGED BRAIN

16:45 Lee Wei Lim (The University of Hong Kong, Hong Kong)

040 OPPOSING ROLES OF SOLUBLE TREM2 ON MICROGLIAL VIABILITY AND CYTOKINE RELEASE

17:00 Xiao-Fen Chen (Xiamen University, China)

17:15 ~ 18:00 **PANEL DISCUSSION 2: PATHOGENIC MECHANISMS**

Panels: Sangram Sisodia (University of Chicago, USA)
Leonard Petrucelli (Mayo Clinic Jacksonville, USA)

18:00 ~ 19:30 **POSTER SESSION 2**
DAILY PROGRAM
Wednesday, May 11

07:30 REGISTRATION

08:15-10:15 SESSION 7: EMERGING MECHANISMS AND THERAPIES IN NEURODEGENERATION
Chair Jungsu Kim (Mayo Clinic Jacksonville, USA)

 022 HUMAN MONOCLONAL ANTIBODIES FOR THE TREATMENT OF NEURODEGENERATIVE DISEASES
 08:15 Roger M. Nitsch (University of Zurich, Switzerland)

 023 PARSING MOLECULAR MECHANISMS OF DEGENERATION IN PARKINSON’S DISEASE
 08:45 Ted M. Dawson (Johns Hopkins University, USA)

 024 PATHOBIOLOGY OF C9orf72
 09:15 Leonard Petrucelli (Mayo Clinic Jacksonville, USA)

 025 C9orf72 BAC MOUSE MODEL WITH MOTOR DEFICITS AND NEURODEGENERATIVE FEATURES OF ALS/FTD
 09:45 Laura P.W. Ranum (University of Florida, USA)

10:15 ~ 10:45 COFFEE BREAK

10:45 ~ 12:15 SESSION 8: GLIA AND INNATE IMMUNITY IN NEURODEGENERATION
Chair Huaxi Xu (Sanford Burnhan Prebys Medical Discovery Institute, USA)

 026 THE ANTIMICROBIAL PROTECTION HYPOTHESIS OF ALZHEIMER’S DISEASE
 10:45 Rudolph Tanzi (Mass General Hospital, Harvard Medical School, USA)

 027 EMERGING ROLES OF REACTIVE ASTROCYTES IN ALZHEIMER’S DISEASE
 11:15 C. Justin Lee (Korea Institute of Science and Technology, Korea)

 028 INNATE IMMUNITY IN NEURODEGENERATIVE DISEASES
 11:45 Todd E. Golde (University of Florida, USA)

12:15 CLOSING REMARKS
THE 4th INTERNATIONAL CONFERENCE ON MOLECULAR NEURODEGENERATION

POSTERS
P1 – MONDAY, MAY 9
P2 – TUESDAY, MAY 10

TOPICS
A. Genetics
B. Biomarkers & Clinical
C. Mechanisms of AD
D. Mechanisms of PD
E. Glia & Innate Immunity
F. Other Neurodegenerative Disorder
G. Novel Animal Models
H. Therapeutics: Preclinical & Clinical
POSTERS
Monday, May 9

A. GENETICS

P1-A1 CLINICOGENETICS IN CHARCOT-MARIE-TOOTH DISEASE TYPE 2Z WITH MORC2 MUTATIONS IN KOREA
Young Se Hyun, Da Hye Yoo, Soo Jung Lee, Young Bin Hong, Byung-Ok Choi, Ki Wha Chung

P1-A2 PRESENLIN 1 MUTATION (A431V) CAUSING FEATURES OF DEMENTIA WITH LEWY BODIES IN A CHINESE FAMILY OF ALZHEIMER’S DISEASE
Yanan Qiao, Dantao Peng

P1-A3 PHENOTYPIC HETEROGENEITIES OF CHARCOT-MARIE-TOOTH DISEASE WITH MUTATIONS IN THE NEUROFILAMENT LIGHT CHAIN (NEFL) GENE
Hye Jin Kim, Geon Kwak, Young Bin Hong, Ji-Su Lee, Ki Wha Chung, Byung-Ok Choi

P1-A4 IDENTIFICATION OF DE NOVO VARIANTS BY TRIO-BASED WHOLE EXOME SEQUENCING AND FUNCTIONAL ANALYSIS OF CANDIDATE GENES IN KOREAN PATIENTS WITH SPORADIC ALS
Young-Eun Kim, Ki-Wook Oh, Su Min Lim, Jinseok Park, Chang-Seok Ki, Seung Hyun Kim

B. BIOMARKERS & CLINICAL

P1-B1 A CASE OF DEMENTIA WITH LEWY BODIES DIAGNOSED BY DOPAMINE TRANSPORTER IMAGE AND CSF BIOMARKERS
Sun-Ah Lee, Dong-Gyu Im, Ji-Eun Kim, Jae-Hyeok Heo

P1-B2 A NEW BLOOD BASED BIOMARKER IN ALZHEIMER’S DISEASE: SELF-STANDARD RATIO OF MONOMERIC FORMS OF AMYLOID BETA
Jee Hoon Roh, YoungSoo Kim, Kyo Seon Hwang, Jihye Hwang, Jae-Seung Kim, Jae-Hong Lee, Jae-young Koh

P1-B3 ALTERED METABOLIC NETWORK ACTIVITY AND ITS RELATIONSHIP WITH DOPAMINERGIC DEGENERATION IN IDIOPATHIC REM SLEEP BEHAVIOR DISORDER
Eun Jin Yoon, Jee-Young Lee, Jae-Sung Lim, Jae Min Jeong, Yu Kyeong Kim

P1-B4 ANKLE-BRACHIAL PRESSURE INDEX CORRELATES WITH CEREBRAL BLOOD FLOW VELOCITY AND GENERAL COGNITION
YS Shim

P1-B5 ASSOCIATION OF CEREBRAL AMYLOIDOSIS, SYSTOLIC BLOOD PRESSURE, AND REGIONAL NEURONAL INJURY WITH LATE-LIFE ONSET DEPRESSION
Min Soo Byun, Young Min Choe, Bo Kyung Sohn, Dahyun Yi, Ji Young Han, Jinsick Park, Hye Jung Choi, Hyewon Baek, Jun Ho Lee, Hyun Jung Kim, Yu Kyeong Kim, Eun Jin Yoon, Chul-Ho Sohn, Jong Inn Woo, Dong Young Lee

P1-B6 CLINICAL AND NEUROIMAGING CHARACTERISTICS OF KOREAN PATIENTS WITH CSF1R MUTATIONS CAUSING ADULT-ONSET LEUKOENCEPHALOPATHY WITH NEUROAXONAL SPHEROIDS AND PIGMENTED GLIA
Min-Kyeong Kim, Jin-Hong Shin, Jaehyeok Lee, Eun-Joo Kim, Jinse Park, Gi-Young Huh

P1-B7 COMPARATIVE ANALYSIS OF IMAGING BIOMARKERS IN THE STRIATUM BETWEEN EARLY VERSUS LATE-ONSET ALZHEIMER’S DISEASE
Ji Eun Kim, Ji Hye Hwang, Chan-Mi Kim, Jae-Hong Lee, Jee Hoon Roh
P1-B8 FUNCTIONAL AND STRUCTURAL HIPPOCAMPAL SUBFIELD ANALYSIS USING 7T MRI AND HRRT FUSION IMAGES
Kee Hyung Park, Eun-Jung Choi, Young Noh, Young-Don Son

P1-B9 GASTROINTESTINAL SYMPTOM IS A SIGNIFICANT INDICATOR OF NIGROSTRIATAL DOPAMINERGIC DEGENERATION IN IDIOPATHIC REM SLEEP BEHAVIOR DISORDER PATIENTS
Jee-Young Lee, Eun Jin Yoon, Hyunwoo Nam, Han-Joon Kim, Beomseok Jeon, Yu-Kyeong Kim

P1-B10 CLINICAL IMPLICATION OF AMYLOID-BETA ACCUMULATION IN OCCIPITAL LOBES USING A [18F] - FLORBETABEN PET
Jihye Hwang, Chan Mi Kim, Ji Eun Kim, Jae-Seung Kim, Jee Hoon Roh, Jae-Hong Lee

P1-B11 EFFECTS OF VIRTUAL REALITY EXERCISE PROGRAM ON BALANCE AND QUALITY OF LIFE IN ELDERLY INDIVIDUALS WITH DEMENTIA
Geun-Ho Lee

P1-B12 METABOTROPIC GLUTAMATE RECEPTOR 5 CHANGES IN DE NOVO AND MEDICATED PARKINSON’S DISEASE PATIENTS: [11C]A83534 PET STUDY
Seong A Shin, Jee Young Lee, Seongho Seo, Yoon Sang Lee, Beom Seok Jeon, Jae Sung Lee, Jae Min Jeong, Yu Kyeong Kim

P1-B13 THE CLINICAL SIGNIFICANCE OF BRAIN MICROBLEEDS IN PATIENTS WITH ALZHEIMER’S DISEASE: PRELIMINARY STUDY
Jae Hyeok Heo, Dong-Gyu Im, Seung-Hyeon Lee, Jin Young Ahn

P1-B14 RETINAL THICKNESS IN PATIENTS WITH AMNESTIC MILD COGNITIVE IMPAIRMENT AND ALZHEIMER’S DISEASE
Bong-Hui Kang, Jae-II Kim

C. MECHANISMS OF AD

P1-C1 A SYSTEM XC- (CYSTEINE-GLUTAMATE ANTIPORTER) INHIBITOR EXACERBATES ASS-MEDIATED HIPPOCAMPAL SYNAPTIC PLASTICITY DISRUPTION IN VIVO
Dainan Zhang, Michael J. Rowan

P1-C2 AGGREGATION PROMOTING EFFECT OF DNA TETRAHEDRON IN AN AMYLOID FORMATION OF A-SYNUCLEIN
Bum Han Ryu, Wanki You, Kyoung-Ran Kim, Kyeong Kyu Kim, Dae-ro Ahn, T. Doohun Kim

P1-C3 EFFECTS OF PRE- AND POST-SYNAPTIC AMYLOID-β EXPRESSION ON TAU PATHOLOGY
Karen Chiang, Cheng-Lin Shaw, Edward Koo

P1-C4 EXPLORING THE ROLE OF PPARγ IN ALZHEIMER’S DISEASE
Susanne Moosecker, Shuang Yu, Anna Pissioti, Rainer Stoffell, Ioannis Sotiropoulos, Osborne F. X. Almeida

P1-C5 ROLE OF NEURONAL NITRIC OXIDE SYNTHASE DIMERIZATION ON THE DEVELOPMENT OF ALZHEIMER’S DISEASE
Kyoung Ja Kwon, Ryoung Eun Kim, Seung Hwa Park, Chan Young Shin, Du-Hyung Cho, Seol-Heui Han

P1-C6 THE LIPIDOME ASSOCIATED WITH THE γ-SECRETASE COMPLEX IS REQUIRED FOR ITS INTEGRITY AND ACTIVITY
Hermeto Gerber, Sophie Ayciriex, Guillermo M. Garcia Osuna, Mohamed Chami, Henning Stahlberg, Andrej Shevchenko, Patrick C. Fraering
P1-D1
25-HYDROXYCHOLESTEROL IS INVOLVED IN THE PATHOGENESIS OF AMYOTROPHIC LATERAL SCLEROSIS
Sung-Min Kim, Min-Young Noh, Heejaung Kim, So-young Cheon, Kang Mi Lee, Jaeick Lee, Eunju Cha, Kyung Seok Park, Kwang-Woo Lee, Jung-Joon Sung, Seung Hyun Kim

P1-D2
A MUTATION IN PMP2 CAUSES DOMINANT DEMYELINATING CHARCOT-MARIE-TOOTH NEUROPATHY
Young Bin Hong, Geon Kwak, Hwan Tae Park, Ki Wha Chung, Byung-Ok Choi

P1-D3
AGE-ASSOCIATED OXIDATIVE DAMAGE TO THE SEQUESTOSOME/P62 PROMOTER IN THE RAT DIABETIC BRAIN
Sang-Il Ahn, Ji Yeon Jeong, Ji Young Im, Sun Ah Park

P1-D4
ASTROCYTE TGF-BETA MODULATES THE DIFFERENTIAL NEURONAL LOSS BY REGULATING C10
Kyoungjoo Cho, Gyuung Whan Kim

P1-D5
Aβ INDUCES BREAKDOWN OF TIGHT JUNCTION IN RETINAL PIGMENT EPITHELIUM BY RAGE/Rho SIGNALING PATHWAY
Jin Hyoung Kim, Sung Wook Park, Jeong Hun Kim

P1-D6
CALCIUM-RESPONSIVE TRANSACTIVATOR PROTEIN (CREST) SHARES COMMON PROPERTIES WITH OTHER ALS-ASSOCIATED PROTEINS
Michail S Kukharsky, Annamaria Quintiero, Taisei Matsumoto, Koji Matsukawa, Haiyan An, Tadaoji Hashimoto, Takeshi Iwatsubo, Vladimir L Buchman, Tatiana A Shelkovnikova

P1-D7
DIRECT CONVERSION OF ALS PATIENT FIBROBLASTS HARBORING FUS MUTATIONS TO INDUCED NEURONS DEMONSTRATES FUS ABNORMALITIES IN ALS NEURONS
Su Min Lim, Minyeop Nahm, Seung Hyun Kim

P1-D8
eFFECT OF AGE AND CENTELLA ASIATICA EXTRACT ON MEDIAL PREFRONTAL CORTEX NEUROPLASTICITY QUANTIFIED BY LEVELS OF BRAIN-DERIVED NEUROTROPHIC FACTOR AND SYNAPSIN-1 AND PAIRED-ASSOCIATIVE COGNITIVE TEST
Lee Thung Sen, Mohammad Reka Ananda Putra, Shindi Eugene Tirma Tampubolon, Ermita I. Ilyas

P1-D9
EPIGENETIC MECHANISM OF SULFORAPHANE ON BDNF EXPRESSION AND SYNAPTIC ACTIVITY IN A TRIPLE-TRANSGENIC MOUSE MODEL OF ALZHEIMER’S DISEASE
Jiyoung Kim, Jisung Kim, Siyoung Lee, Bo-Ryoung Choi, Jung-Soo Han, Ki Won Lee

P1-D10
ESSENTIAL ROLE OF FcγRⅡb2 IN NEURONAL UPTAKE AND PROPAGATION OF AMYLOID-B1-42 OLIGOMERS FOR NEUROTOXICITY
Youngdae Gwon, Tae-In Kam, Yong-Keun Jung

P1-D11
FISETIN FACILITATES THE CLEARANCE OF PHOSPHORYLATED TAU BY THE ACTIVATION OF TFEB AND NRF2
Sunhyo Kim, Ki Ju Choi, Sang-Moon Yun, Young Ho Koh, Jae-Pil Jeon, Jihyun Song, Chulman Jo

P1-D12
HUMAN APOE ISOFORMS DIFFERENTIALLY REGULATE NEURONAL AUTOPHagy
Hee-Young Sohn, Chulman Jo, Jihyun Song
P1-D13 HYPOXIA-INDUCED AXONAL DEGENERATION IN IN VITRO CEREBELLAR SLICE MODEL
Yue Xian Cui, Byung G. Kim

P1-D14 IN VIVO QUANTIFICATION OF PERIVASCULAR DRAINAGE IN MOUSE CEREBRAL CORTEX AND ITS ROLE IN ALZHEIMER’S DISEASE
ShinHeun Kim, Peter Lee, Jinho Kim, Yong Jeong

P1-D15 LIMITING NEUROINFLAMMATION THROUGH INTRACELLULAR COPPER DELIVERY
Xin Yi Choo, Alexandra Grubman, Lachlan E. McInnes, Karla Acevedo, Katja M. Kanninen, , Paul S. Donnelly, Anthony R. White

P1-D16 MEK INHIBITORS HAVE ANTIDYSKINETIC EFFECTS IN HEMIPARKINSONIAN RATS THAT ARE ASSOCIATED WITH CRITICAL NEUROCHEMICAL ALTERATIONS IN THE STRIATUM
Guiqin Chen, Shuke Nie, Kai Ma, Chao Han, Yan Xu, Zhentao Zhang, Stella M. Papa, Xuebing Cao

P1-D17 MISLOCATED FUS IS SUFFICIENT FOR A DOMINANT GAIN-OF-FUNCTION ALS PHENOTYPE IN MICE
Gen Shiihashi, Daisuke Ito, Takuya Yagi, Yoshihiro Nihei, Norihiro Suzuki

P1-D18 NOBILETIN RESTORES Aβ-INDUCED INJURY VIA THE NF-κB-DEPENDENT SIGNALING PATHWAY IN PC12 CELLS
Kumju Youn, Mira Jun

P1-D19 O-GLCNACYLATION OF ATG4B REGULATES AUTOPHagy BY INCREASING PROTEASE ACTIVITY IN NEURONAL CELLS
Yoon Kyung Jo, Dong-Hyung Cho

P1-D20 p53 PHOSPHORYLATION BY LRRK2 INDUCES p21WAF1/CIP1 EXPRESSION
Ilhong Son, Dong Hwan Ho, Hyejung Kim, Hyemyung Seo, Wongi Seol

P1-D21 PROCYANIDINS EXTRACTED FROM THE LOTUS SEEDPOD PREVENTS MEMORY DEFICITS IN COGNITIVELY IMPAIRED AGED RATS
Ziqin Cao, Shuke Nie, Yang Tan, Yan Xu

P1-D22 Rab8 REGulates FASCICLIN II RECYCLING TO MODULATE SYNAPSE DEVELOPMENT
Minyeop Nahm, Sunyoung Park, Seungbok Lee, Seung Hyun Kim

P1-D23 UCH-L1 Ubiquitin C-TERMINAL HYDROLASE1 ASSOCIATES WITH LIPID RAFTS AND AFFECTS LIPID RAFTS-DEPENDENT ENDOCYTOSIS
SJ Kang, JS Kim, SJ Park, SM Park

P1-D24 TRAP1 MUTATION AND TRAP1 INHIBITOR GAMITRINIB-TPP SUPPRESS PINK1 NULL MUTANT PHENOTYPES AND PARAQUAT-INDUCED DOPAMINERGIC NEURON CELL DEATH VIA FOXO-DEPENDENT CELL PROTECTIVE SIGNAL FROM MITOCHONDRIA
Hyunjin Kim, Jinsung Yang, Min Ju Kim, Sekyu Choi, Jongkyeong Chung, Hyongjong Koh
POSTERS
Monday, May 9

E. GLIA & INNATE IMMUNITY

P1-E1 AMPLIFICATION OF DISTINCT A-SYNUCLEIN FIBRIL CONFORMERS USING PROTEIN MISFOLDING CYCLIC AMPLIFICATION
Byung Chul Jung, Yoon-Ju Lim, Jun Sung Lee, Seung-Jae Lee

P1-E2 CAVEOLIN-1 IS A NOVEL REGULATOR OF MITOCHONDRIAL DYNAMICS SHOWN IN PARKIN-RELATED PARKINSON’S DISEASE
Ji Yeon Lee, Seon-Heui Cha, Sang Myun Park

P1-E3 G2385R AND I2020T MUTATIONS INCREASE LRRK2 GTPase ACTIVITY
Ilhong Son, Dong Hwan Ho, Jihoon Jang, Hyemyung Seo, Wongi Seol

P1-E4 FCγRIIB REGULATES THE CELL TO CELL OF α-SYNUCLEIN TRANSMISSION IN THE CNS
Yu Ree Choi, Jae Bong Kim, Uram Jin, Sang Myun Park

P1-E5 PATHOPHYSIOLOGICAL FUNCTIONS OF LRRK2-eEF1A1 INTERACTION
Ilhong Son, Dong Hwan Ho, Daleum Nam, Hyemyung Seo, Wongi Seol

F. OTHER NEURODEGENERATIVE DISORDER

P1-F1 DJ-1, PARK7, PLAYS CRITICAL ROLES IN ASTROGLIOSIS IN INJURED BRAIN
Dong-Joo Choi, Eun-hye Joe

P1-F2 DIRECT INDUCTION OF RAMIFIED MICROGLIA-LIKE CELLS FROM HUMAN MONOCYTES MAY MIRROR CHARACTERIZATION OF ADULT MICROGLIA CELL
Min-Young Noh, Ki-Wook Oh, Min-Soo Kwon, Su-Jung Lee, Jinseok Park, Seung Hyun Kim

P1-F3 GLIA EXPRESSION OF TDP-43 CAN INDUCE NEUROTOXICITY IN DROSOPHILA
Shinrye Lee, Seyeon Kim, Young Hwi Kwon, Yu-Mi Jeon, Hyung-Jun Kim

P1-F4 GLIAL CONTRIBUTION TO SELECTIVE HIPPOCAMPAL NEUROTOXICITY IN GLOBAL CEREBRAL ISCHEMIA
Jae-Hong Kim, Kyoungho Suk

P1-F5 INTER- AND INTRA-ALLELIC PHENOTYPIC SPECTRUM IN AXONAL CMT PATIENTS WITH KIF5A MUTATIONS
Da Eun Nam, Sun Sung Choi, Mi Jung Yoon, Byung-Ok Choi, Ki Wha Chung

P1-F6 KCHO-1(MECASIN), A NOVEL HERBAL ANTI-INFLAMMATORY COMPOUND, ATTENUATES NEURO-INFLAMMATION, AND EXTENDS SURVIVAL IN AN ANIMAL MODEL OF AMYOTROPHIC LATERAL SCLEROSIS
Sungchul kim

P1-F7 MATRIX METALLOPROTEINASE-8 INHIBITOR AMELIORATES INFLAMMATORY RESPONSES AND BEHAVIORAL DEFICITS IN LRRK2 G2019S PARKINSON’S DISEASE MODEL MICE
Taewoo Kim, Jeha Jeon, Jin-Sun Park, Joeeui Kim, Haneul Noh, Hee-Sun Kim, Hyemyung Seo

P1-F8 PERSISTENT GLUCOCORTICOID RECEPTOR ACTIVATION REDUCES M2-LIKE MICROGLIA PHENOTYPES VIA YY1 SIGNALING
Min-Jung Park, Hye-Lim Yeo, Min-Jung You, Seung Hyun Kim, Min-Soo Kwon
G. NOVEL ANIMAL MODELS

P1-G1 A TRANSLATIONAL NEUROIMAGING TOOL FOR MACRO AND MICRO BRAIN CHANGES BOTH IN HUMAN AND LARGE ANIMAL FOR NEURODEGENERATION DISEASE
Regina E.Y. Kim, Peg Nopoulos, Vincent Magnotta, Ralf Reilmann, Jane Paulsen, Hans Johnson

P1-G2 RELATIVE SPARING FROM IPSILATERAL SEROTONERGIC CELL DEATH IS RELATED WITH DEVELOPMENT OF LEVODOPA-INDUCED DYSKINESIA IN HEMI-PARKINSONIAN RATS
Jinyoung Youn, Mi Young Jeon, Jin Whan Cho

P1-G3 LONGITUDINAL ALTERATIONS IN PRESYMPTOMATIC HIPPOCAMPAL SYNAPTIC FUNCTION, THE ROLE OF GLUN2B-NMDARS, AND GENDER IN THE NOVEL TGF344-ALZHEIMER’S DISEASE RAT MODEL
Lindsey Allyson Smith, Terrence C. Town, Lori L. McMahon

P1-G4 INHIBITION OF DRP1 AMELIORATES SYNAPTIC DEPRESSION, Aβ DEPOSITION AND MEMORY DEFICIT IN ALZHEIMER MICE
Seung-Hyun Back, Jae In Jeong, So Jung Park, Dong-Hyung Cho, Dong-Gyu Jo

P1-G5 DEVELOPMENT OF IN VITRO HUMAN DISEASE MODEL FOR SPINAL MUSCULAR ATROPHY
Ye Seul Son, Minhyung Lee, Kwang Bo Jung, Sunwha Cho, Mi-Young Son, Janghwan Kim

P1-G6 PROGRESSIVE DYSFUNCTION OF MITOCHONDRIA IN PD MODEL MICE WITH LRRK2 MUTATIONS
Jisun Kim, Jooeui Kim, Jihoon Jang, Hyemyung Seo

H. THERAPEUTICS: PRECLINICAL & CLINICAL

P1-H1 ANTI-INFLAMMATORY EFFECT OF ORAL-FORMULATED TACROLIMUS IN EXPERIMENTAL AUTOIMMUNE ENCEPHALOMYELITIS (EAE) MICE
Myung-Jin Kim, Young Chul Youn, Oh-Sang Kwon, Jung-Joon Sung, Suk-Won Ahn

P1-H2 ANTI-AMNESIC EFFECT OF ONION (ALLIUM CEPA L.) FLESH AND PEEL ETHYL ACETATE FRACTION ON AMYLOID BETA (Aβ1-42)-INDUCED LEARNING AND MEMORY IMPAIRMENT
Seon Kyeong Park, Tian Jiao Guo, Jin Yong Kang, Jeong Su Ha, Du Sang Lee, Jong Min Kim, Ho Jin Heo

P1-H3 EFFECT OF EIOH EXTRACT OF CHAENOMELES SINENSIS FRUIT ON THE METABOLISM OF APP FROM APPswe OVEREXPRESSING NEURO2A CELL LINE
Ju-Eun KIM, Youn-Jeong JO, Jae-Yoon LEEM

P1-H4 EFFECT OF ROSAE RUGOSAE FLOS (RR) ON APPswe OVEREXPRESSING NEURO2A CELLS
Hyo Shin Kim, Ju Eun Kim, Jae Yoon Lim

P1-H5 GENE THERAPY BY PROTEASOME ACTIVATOR, PA28y, IMPROVES MOTOR COORDINATION AND PROTEASOME FUNCTION IN HUNTINGTON’S DISEASE YAC128 MICE
Jihoon Jang, Jeha Jeon, Woori Kim, Ole Isacson, Hyemyung Seo

P1-H6 MESENCHYMAL STEM CELLS MODULATE THE FUNCTIONAL PROPERTIES OF MICROGLIA VIA TGF-β SECRETION
Min-Young Noh, Min-Soo Kwon, Su Min Lim, Ki-Wook Oh, Kyung-Ah Cho, Su-Jung Lee, Jinseok Park, Kyung-Suk Kim, Seung Hyun Kim
POSTERS
Monday, May 9

P1-H7 MICRONA MODULATION: A PROMISING THERAPEUTIC STRATEGY FOR ALZHEIMER’S DISEASE
Ana Teresa Viegas, Vítor Carmona, Joana Guedes, Ana Rafaela Oliveira, Luís Pereira de Almeida, Catarina Resende Oliveira, João Pedro de Magalhães, João Peça, Ana Luísa Cardoso

P1-H8 NEUROPROTECTIVE EFFECT OF TNF-ALPHA INHIBITOR AGAINST AB TOXICITY IN AN EXPERIMENTAL MODEL OF ALZHEIMER DISEASE USING HIPPOCAMPAL SLICE CULTURE
Jae-Hyeok Heo, Tai Hwan Park, Jeong A Shin, Young Cheol Yoon

P1-H9 PIPERLONGUMINE ATTENUATES EXPERIMENTAL AUTOIMMUNE ENCEPHALOMYELITIS THROUGH INHIBITION OF NF-κB ACTIVITY
Sun Mi Gu, Jae Suk Yun, Dong Ju Son, Kyung Tak Nam, Hae Deun Kim, Min Gi Choi, Jeong Soon Choi, Young Min Kim, Sang Bae Han, Jin Tae Hong

P1-H10 RED GINSENG OIL REGULATES Aβ25-35–TRIGGERED TOXICITY THROUGH THE SUPPRESSION OF NF-κB SIGNALING PATHWAY
Seonah Lee, Mira Jun

P1-H11 THE MITOCHONDRIAL ATP SYNTHASE IS A SHARED DRUG TARGET BETWEEN AGING AND ALZHEIMER’S DISEASE
Josh Goldberg, Antonio Currias, Marguerite Prior, Wolfgang Fischer, Michael Petrascheck, Kimberley Finnley, Richard Dargusch, Daniel Daugherty, Pam Maher, Dave Schubert

P1-H12 ERYTHROPOIETIN ADMINISTRATION ATTENUATES THE COGNITIVE AND MEMORY DEFICITS BY REDUCING INFLAMMATION IN POST-OPERATIVE COGNITIVE DECLINE
Jae Hoon Lee, Eun Hee Kam, So Yeong Cheon, Jeong Min Kim, Eun Jung Kim, Bon-Nyeo Koo

P1-H13 NEUROPROTECTIVE EFFECTS OF BET INHIBITOR IN RAT PRIMARY CORTICAL NEURONS: A POTENTIAL THERAPEUTIC APPROACH IN ALZHEIMER’S DISEASE
Kyoung Ja Kwon, Ryoung Eun Kim, Pyeong Hwa Eun, Dong-Hee Choi, Jong-min Lee, Chan Young Shin, Seol-Heui Han
A. GENETICS

P2-A1 GENE PANELS OF 50 GENES FROM NEURODEGENERATIVE DISEASES FOR NGS
Vo Van Giau, Seong Soo A. An, Eva Bagyinszky, SangYun Kim

P2-A2 INNATE IMMUNITY AND NF KAPPA B: UNIFYING ALL KNOWN RISK FACTORS FOR ALZHEIMER’S DISEASE
S Vann Jones, I Kounantidis

P2-A3 TBK1 MUTATIONS IN KOREAN PATIENTS WITH AMYOTROPHIC LATERAL SCLEROSIS
Ki-Wook Oh, Young-Eun Kim, Jinseok Park, Ja-Hyun Jang, Eun-Hae Cho, Chang-Seok Ki, Seung Hyun Kim

P2-A4 PANEL-BASED SCREENING FOR KOREAN PATIENTS WITH AMYOTROPHIC LATERAL SCLEROSIS
Ki-Wook Oh, Hee-Jung Kim, Min-Jung Kwon, Young-Eun Kim, Jinseok Park, Byung-Ok Choi, Seungbok Lee, Chang-Seok Ki, Seung Hyun Kim

B. BIOMARKERS & CLINICAL

P2-B1 A STRUCTURAL MODEL OF QUALITY OF LIFE IN CAREGIVERS OF PEOPLE WITH PARKINSON’S DISEASE IN KOREA
JuHee Lee, SungHae Kim, Yonji Kim, Yong H. Sohn

P2-B2 ALTERATION OF INFLAMMATORY BIOMARKER LEVELS IN SENILE APP/PS1/TAU TRANSGENIC MICE FOR ALZHEIMER DIAGNOSIS
Seung-Hoon Yang, Jiyoon Kim, YoungSoo Kim

P2-B3 ALZHEIMER’S DISEASE CEREBROSPINAL FLUID METABOLIC FINGERPRINTS (1H-NMR) SHOW ABNORMALITIES IN ENERGY METABOLISM
Min Kim, Cristina Legido-Quigley, Ana Casas, Richard O’Brien, Marilyn Albert, Madhav Thambisetty

P2-B4 ASSOCIATION BETWEEN PHOSPHATIDYLCHOLINES FOUND IN PLASMA AND HIPPOCAMPAL BRAIN VOLUME IN LATE ONSET ALZHEIMER’S DISEASE

P2-B5 AMYLOID BETA-WEIGHTED CORTICAL THICKNESS: A NEW IMAGING BIOMARKER IN ALZHEIMER’S DISEASE
So Hee Park, ChanMi Kim, MS, Jihye Hwang, Yunok Lee, Jee Hoon Roh, Jae-Hong Lee

P2-B6 CEREBROSPINAL FLUID BIOMARKERS FOR THE DIAGNOSIS OF ALZHEIMER’S DISEASE IN KOREAN PATIENTS
Sun Ah Park, Ji Young Im, Hyeong Jun Kim, Ho Sik Shin, Saeromi Kim, Sang Il Ahn, Won Seok Chae, Kyoung Dae Min, Soo Jae Yim, Byoung Seok Ye, Sang Won Seo, Jee Hyang Jeong, Kyung Won Park, Seong Hye Choi, Duk L. Na

P2-B7 METABOLIC RISK INDEX OF DEMENTIA IN AN URBAN ELDERLY POPULATION: A COMMUNITY-BASED CROSS-SECTIONAL STUDY
Yeon-Ha KIM, Seung-Hyun KIM, Moon-Hee JUNG, Hee-Jin KIM

POSTERS
Tuesday, May 10
P2-B8 PLASMA VEGF PROTEIN IS ELEVATED IN ALZHEIMER’S DISEASE
Sun-Jung Cho, Chulman Jo, Jihyun Song, Young Ho Koh

P2-B9 IMAGING OF CELLULAR TAU AGGREGATES WITH A BODIPY-BASED FLUORESCENT COMPOUND
Md. Mamunul Haque, Dohee Kim, Sungsu Lim, Yun Kyung Kim

P2-B10 INCREASED PHOSPHORYLATION OF INSOLUBLE MONOMERIC α-SYNUCLEIN AT SER129 CORRELATES WITH DECREASED RABPHILIN 3A LEVELS IN DEMENTIA WITH LEWY BODIES
Mitchell K.P. Lai, Huayang Xing, Ruifen Chong, Paul T. Francis, Dag Aarsland, Christopher P. Chen

P2-B11 SURVEILLANCE OF GENETIC PRION DISEASES IN KOREAN PATIENTS
Seung-Joo Kim, Eun-Joo Kim, Jae-Hyeok Lee, Jin-Hong Shin

P2-B12 TAURINE IN DRINKING WATER RECOVERS LEARNING AND MEMORY IN THE ADULT APP/ PS1 MOUSE MODEL OF ALZHEIMER’S DISEASE
Hye Yun Kim, Hyunjin V. Kim, Jin H. Yoon, Bo Ram Kang, Soo Min Cho, Sejin Lee, Ji Yoon Kim, YoungSoo Kim

P2-B13 THE EFFECT OF Aβ DEPOSITION, NEURODEGENERATION, APOE AND THEIR INTERACTIONS ON THE CLINICAL AND COGNITIVE TRAJECTORIES OF HEALTHY ELDERLY CONTROLS
Samantha Burnham, Pierrick Bourgeat, Vincent Dore, Simon Laws, Olivier Salvado, Greg Savage, Colin Masters, Christopher Rowe, Victor Villemagne

C. MECHANISMS OF AD

P2-C1 AGE-DEPENDENT INVERSE CORRELATIONS IN CSF AND PLASMA AMYLOID-β (1-42) CONCENTRATIONS PRIOR TO AMYLOID PLAQUE DEPOSITION IN THE BRAIN OF 3xTg-AD MICE
Sejin Lee, Soo Min Cho, Seung-Hoon Yang, Hye Yun Kim, Jiyoon Kim, Seungyeop Baek, YoungSoo Kim

P2-C2 ALZHEIMER’S DISEASE-ASSOCIATED R47H VARIANT OF TREM2 ALTERS THE GLYCOSYLATION PATTERN AND THE PROTEIN STABILITY
Ji-Seon Park, Dong-Hou Kim, Seung-Yong Yoon

P2-C3 ALTERATION OF MEMBRANE MICROLOCALIATION AND γ-SECRETASE CLEAVAGES IN SPORADIC ALZHEIMER’S DISEASE
Saori Hata, Yi Piao, Hu Anqi, Masaki Nishimura, Toshiharu Suzuki

P2-C4 ANTI-AMYLOIDOGENIC APPROACH TO ACCESS AMYLOID-β(1-42) IN FMOC SOLID-PHASE SYNTHESIS
Sejin Lee, Seungyeop Baek, Jiyoon Kim, YoungSoo Kim

P2-C5 CELL-TO-CELL TRANSMISSION OF α-SYNUCLEIN FROM NEURONS TO OLIGODENDROCYTES AND ITS IMPLICATION IN MULTIPLE SYSTEM ATROPHY
Ye-seul Yoon, Woo-jung Ahn, Seung-Jae Lee, He-Jin Lee

P2-C6 ROLE OF LRAT IN β-TAURINE PATHOGENESIS BY REGULATING LYSOSOMAL FUNCTION IN AD
Seo-Hyun Kim, Tae-In Kam, Youngdae Gwon, Yong-Keun Jung
D. MECHANISMS OF PD

P2-D1 A MUTATION IN DGAT2 CAUSES AN Autosomal Dominant Early-Onset Axonal CHARCOT-Marie-Tooth Disease
Geon Kwak, Young Bin Hong, Ji-Su Lee, Ki Wha Chung, Byung-Ok Choi

P2-D2 ACUPUNCTURE, INHIBITION OF INFLAMMATORY CYTOKINES AND NEUROPROTECTION AGAINST HYPOXIA-ISCHEMIA INJURY
Qinyu Wang, Dongman Chao, Gianfranco Balboni, Guanghong Ding, Ying Xia

P2-D3 ALLELE-SPECIFIC siRNA AMELIORATES PHENOTYPIC SEVERITY IN PMP22 MUTATION BEARING MOUSE
Ji-Su Lee, Geon Kwak, Young Bin Hong, Byung-Ok Choi

P2-D4 PATIENT-SPECIFIC MOTOR NEURONS DIFFERENTIATED FROM INDUCED PLURIPOTENT STEM CELLS OF CHARCOT-Marie-Tooth Disease REVEAL DEFECTS IN AXONAL MOVEMENTS OF MITOCHONDRIA
Sung Bae Kim, Ji Yon Kim, Young-Bin Hong, So-Youn Woo, Byung-Ok Choi

P2-D5 AUTOPHAGY ACTIVATION IN TDP-43 PROTEINOPATHIES
Kuen-Jer Tsai

P2-D6 C9FTD/ALS POLY (GA) RAN TRANSLATED PROTEIN IS IN THE CORE OF SEEDING PROCESS FOR DPR AGGREGATION AND TOXICITY
Youn-Bok Lee, Pranetha Baskaran, Jeorge Gomez, Agnes Nishimura, Frank Hearth, Jean-Marc Gallo, Leonard Petrucci, Boris Rogelj, Sarah Guthrie, Christopher E Shaw

P2-D7 CLEC4C P.K210Del VARIANT CAUSES IMPAIRED CELL SURFACE TRANSPORT IN PLASMACYTOID DENDRITIC CELLS OF JUVENILE AMYOTROPHIC LATERAL SCLEROSIS
Su Min Lim, Young-Eun Kim, Chang-Seok Ki, Seung Hyun Kim

P2-D8 EFFECTS OF ACTINIDIA ARGUTA CHLOROFORM FRACTION AGAINST HIGH GLUCOSE-INDUCED NEURONAL CYTOTOXICITY
Jeong Su Ha, Seon Kyeong Park, Tian Jiao Guo, Jin Yong Kang, Du Sang Lee, Jong Min Kim, Ho Jin Heo

P2-D9 ENHANCED FAST AXONAL TRANSPORT OF APP MEDIATED BY JIP1 INTERACTION
Kyoko Chiba, Masahiko Araseki, Keisuke Nozawa, Roger Davis, Masataka Kinjo, Toshiharu Suzuki

P2-D10 EPPS RESCUES HIPPOCAMPUS-DEPENDENT COGNITIVE DEFICITS BY DISAGGREGATION OF AMYLOID-β OLIGOMERS AND PLAQUES
Hye Yun Kim, Hyunjin Vincent Kim, Seonmi Jo, C. Justin Lee, Seon Young Choi, Dong Jin Kim, YoungSeo Kim

P2-D11 GENETIC ABLATION OF TRPM2 ACCELERATES PROTEIN AND LIPID AGGREGATION IN THE BRAIN BY IMPAIRED AUTOPHAGIC CLEARANCE

P2-D12 GLIOBLASTOMA ACTIVATES TAU PHOSPHORYLATION AND TAU AGGREGATION.
Sungsu Lim, Dohee Kim, Shin-yeong Ju, Il-joo Cho, Sung-Hye Park, Min Jung Kim, Md. Mamunul Haque, Ae Nim Pae, Dong-Jin Kim, Cheoolju Lee, Yun Kyung Kim
POSTERS
Tuesday, May 10

P2-D13 IDENTIFICATION OF PRION-LIKE TAU SPECIES TRIGGERING ENDOGENOUS TAU AGGREGATION AND PHOSPHORYLATION
Dohee Kim, Sungsu Lim, Yun Kyung Kim

P2-D14 IDENTIFICATION OF PROTEIN PHOSPHATASE 2A AND RIBOSOMAL S6 KINASE AS MODIFIERS OF LEUCINE RICH REPEAT KINASE-INDUCED NEUROTOXICITY
Joan Poh-Ling Sim, Shu Ping Lin, Adeline Henry Basil, Chee-Hoe Ng, Kah-Leong Lim

P2-D15 INCREASED EXPRESSION OF SOCS2 IN THE SUBVENTRICULAR ZONE AFTER TRANSIENT FOCAL CEREBRAL ISCHEMIA IN ADULT RATS
Yoo-Jin Shin, Jeong-Heon Choi, Tae-Ryong Riew, Xuyan Jin, Ha-Jin Pak, Mun-Yong Lee

P2-D16 INDUCTION OF OSTEOPOINTIN EXPRESSION IN 3-NITROPROPIONIC ACID-INDUCED NEUROTOXICITY IN RATS: POTENTIAL INVOLVEMENT IN STRIATAL NEURONAL DEATH
Tae-Ryong Riew, Yoo-Jin Shin, Xuyan Jin, Jeong Heon Choi, Ha-Jin Pak, Mun-Yong Lee

P2-D17 MILD LEVELS OF STRESS AMELIORATES LEARNING AND MEMORY IMPAIRMENTS IN AGED AND TRANSGENIC ANIMAL MODELS OF ALZHEIMER’S DISEASE
Chan Lee, Jung-Hee Jang, Gyu Hwan Park

P2-D18 MITOCHONDRIAL DYSFUNCTION AND CELLULAR TOXICITY BY MITOCHONDRIA-TARGETED AMYLOID BETA
Dong Kyu Kim, Moon-Yong Cha, Yeon-Soo Kim, Inhee Mook-Jung

P2-D19 NOVEL MECHANISMS INVOLVED IN THE REGULATION OF NEURONAL CELL CYCLE AND DEATH
Surbhi Jaiswal, Prashant Modi, Pushkar Sharma

P2-D20 OPENING THE GATE OF MAMMALIAN PROTEOSOMES AND ITS PROTEOSTATIC CONSEQUENCES
Won Hoon Choi, Min Jae Lee

P2-D21 PATIENT FIBROBLASTS-DERIVED INDUCED NEURONS DEMONSTRATES AUTONOMOUS NEURONAL DEFECTS IN KRABBE DISEASE
Su Min Lim, Seong-il Oh, Chang-Seok Ki, Seung Hyun Kim

P2-D22 PINE NEEDLE EXTRACT ATTENUATES NEURONAL EXCITOTOXICITY AND MEMORY IMPAIRMENT IN A SEVERE RESTRAINT STRESS MOUSE MODEL
Jin-Seok Lee, Chang-Gue Son

P2-D23 TRPM2, A SUSCEPTIBILITY GENE FOR BIPOLAR DISORDER, REGULATES GLYCOGEN SYNTHASE KINASE-3 ACTIVITY IN THE BRAIN
Yongwoo Jang, Sung Hoon Lee, Byeongjun Lee, Seungmoon Jung, Arshi Khalid, Kunitoshi Uchida, Makoto Tominaga, Daejong Jeon, Uhtaek Oh

P2-D24 XKN INTERACTS WITH MICROTUBULES TO IMPAIR THE FUNCTION OF TAU AND MICROTUBULE
Hyejin Park, Sewon Moon, Tae-In Kam, Yong-Keun Jung

E. GLIA & INNATE IMMUNITY

P2-E1 A LYSOPOLYSACCHARIDE-GENERATED A-SYNUCLEIN STRAIN INDUCES DISTINCT SYNUCLEINOPATHIES IN VIVO
POSTERS
Tuesday, May 10

P2-E2 AUTOPHAGIC MODULATION BY ROSUVASTATIN PREVENT ROTENONE INDUCED NEUROTOXICITY AS AN IN VITRO MODEL OF PARKINSON’S DISEASE
Seo Young Kang, Wooyoung Jang

P2-E3 THE ROLES OF LYSOSOMAL EXOCYTOSIS IN CONTINUOUS TRANCELLULAR TRANSMISSION OF ALPHA-SYNUCLEIN
Eun-Jin Bae, Cheolsoon Lee, Wonjae Lee, He-Jin Lee, Seung-Jae Lee

P2-E4 PARKIN DEFICIENCY EXACERBATES ETHANOL-INDUCED DOPAMINERGIC NEURODEGENERATION IN MOUSE THROUGH OXIDATIVE STRESS-MEDIATED LACK OF MITOCHONDRIAL AUTOPHagy VIA P38 PATHWAY DEPENDENT MECHANISM
Chul Ju Hwang, Young Eun Kim, Dong Ju Son, Mi Hee Park, Dong Young Choi, Pil Hoon Park, Sang-Bae Han, Jin Tae Hong

F. OTHER NEURODEGENERATIVE DISORDER

P2-F1 ANTIBIOTIC-INDUCED PERTURBATIONS IN GUT MICROBIAL DIVERSITY INFLUENCES NEURO-INFLAMMATION AND AMYLOIDOSIS IN APP^{sw}/PS1^{Δe9} MICE.
Myles R. Minter, Can Zhang, Vanessa Leone, Xiaoqiong Zhang, Paul Oyler-Castrillo, Mark W. Musch, Daina Ringus, Rudolph E. Tanzi, Eugene B. Chang, Sangram S. Sisodia

P2-F2 CAFFEINE INDUCES AUTOPHAGY AND MODULATES IMMUNE RESPONSES IN MICROGLIA
Eunjung Leah Kim, Seong-Woon Yu

P2-F3 EXPRESSION OF CLEC4C IN THE HUMAN CENTRAL NERVOUS SYSTEM
Sung Hoon Kim, Minyeop Nahm, Su Min Lim, Min-Young Noh, Seung Hyun Kim

P2-F4 INHIBITORY RNA APtAMERS OF TAU OligomerIZATION AND THEIR NEUROPROTECTIVE ROLES AGAINST PROTEOTOXIC STRESS
Ji Hyeon Kim, Eunkyoung Kim, Min Jae Lee

G. NOVEL ANIMAL MODELS

P2-G1 LOGANIN PROTECTS NEURONS AGAINST PARKINSONIAN TOXIN 1-METHYL-4-PHENYL-PYRIDINIUM VIA ACTIVATING GLUCAGON-LIKE PEPTIDE-1 RECEPTOR-MEDIATED AUTOPHagy PATHWAY IN PRIMARY MESENCEPHALIC CULTURES
Yi-Ching Lo, Yu-Ting Tseng

P2-G2 CELLULAR CO-LOCALIZATION OF TAU FRAGMENT N279 AND ALPHA-SYNUCLEIN IN TWO ANIMAL MODELS OF PARKINSON’S DISEASE
Kai Ma, Ziqin Cao, Shuke Nie, Guiqin Chen, Chao Han, Xingfang Guo, Xuebing Cao

H. THERAPEUTICS: PRECLINICAL & CLINICAL

P2-H1 AMELIORATING EFFECT OF ACTINIDIA ARGUTA EXTRACT ON AMYLOID BETA (Aβ) 1-42-INDUCED COGNITIVE DYSFUNCTION
Jeong Su Ha, Seon Kyeong Park, Tian Jiao Guo, Jin Yong Kang, Du Sang Lee, Jong Min Kim, Ho Jin Heo
POSTERS

Tuesday, May 10

P2-H2 ANTI-AGING TREATMENTS SLOW PROPAGATION OF SYNUCLEINOPATHY BY RESTORING LYSOSOMAL FUNCTION
Dong-Kyu Kim, Hee-Sun Lim, Ichiro Kawasaki, Yhong-Hee Shim, Nishant N. Vaikath, Omar M. A. El-Agnaf, He-Jin Lee, Seung-Jae Lee

P2-H3 AMELIORATING EFFECT OF DENDROPANAX MORBIFERA ON COGNITIVE DYSFUNCTION IN HIGH-FAT DIET-INDUCED MICE.
Jong Min Kim, Seon Kyeong Park, Tian Jiao Guo, Jin Young Kang, Jeong Su Ha, Du Sang Lee, Ho Jin Heo

P2-H4 EFFECT OF ANOREXIGENIC NEUROPEPTIDES ON MEMORY AND TAU PATHOLOGY
Andrea Popelová, Barbora Mikulášková, Barbora Judita Kasperová, Blanka Železná, Marie-Christine Galas, Luc Buée, Lenka Maletínská

P2-H5 GONGJIN-DAN ENHANCES HIPPOCAMPAL MEMORY IN A SCOPOLAMINE-INDUCED AMNESIA MOUSE MODEL
Won-Yong Kim, Chang-Gue Son

P2-H6 HUMAN NEURAL STEM CELL TRANSPLANTATION ALLEVIATES ALZHEIMER’S DISEASE-LIKE PATHOLOGY IN A MOUSE MODEL VIA MULTIPLE MECHANISMS
Il-Shin Lee, Kwangsoo Jung, Il-Sun Kim, Haejin Lee, Miri Kim, Seokhwan Yun, Kyujin Hwang, Jeong Eun Shin, Kook In Park

P2-H7 SUPPRESSION OF BACE1 EXPRESSION BY miR-874 IN THE BRAIN: IMPLICATION IN THE PATHOGENESIS OF SPORADIC ALZHEIMER’S DISEASE
Jaekwang Kim, Krystal D. Belmonte, Hyejin Yoon, Dah-eun Chung, Melissa E. Murray, Monica Castanedes-Casey, Linda Rousseau, Virginia Phillips, Dennis W. Dickson, Jungsu Kim

P2-H8 EFFECT OF HIGH FAT DIET ON COGNITIVE IMPAIRMENT IN TRIPLE TRANSGENIC MICE OF ALZHEIMER’S DISEASE
Sah Saroj Kumar, Chan Lee, Jung-Hee Jang, Gyu Hwan Park

P2-H9 TFEB-ACTIVATION AND PROTECTIVE EFFECTS BY OUABAIN IN ALZHEIMER’S DISEASE MODELS
Ha-Lim Song, Seung-Yong Yoon, Dong-Hou Kim
The safest & first choice Disgren®

Triflusal 300mg

Dual mechanism
- Platelet COX 1 inhibition
- Increase of cAMP

Additional effect
- Lower hemorrhagic complication
- NO increase / Neuroprotection
Aricept® ALWAYS THE ANSWER

• A DL
Aricept, improving activities of daily living

• B eha vior
Aricept, optimizing patient's behavioral symptoms

• C ognition
Aricept, maximizing patient's cognition significantly

• D efensive Effects in Neuron
Aricept, maximizing defensive effects in neuron

• E arly Treatment
Aricept, improving cognition with early treatment

References

PRESCRIBING INFORMATION

Aricept® Tablets ((donepezil hydrochloride 5 mg, 10 mg, 23 mg, 30 mg tablets) (Tablets) (Orally Disintegrating tablets)) For the symptomatic treatment of Alzheimer’s disease and symptomatic improvement of cognitive disorder (mild, moderate, severe) caused by Alzheimer’s disease, in which the patient is usually forgetful or has difficulty conducting daily activities.

1. CONTRAINDICATIONS

- Known hypersensitivity to donepezil hydrochloride, piperidine derivatives, or to any excipients of the product.
- Use in patients with a known history of significant heart disease or use of drugs that can increase the risk of cardiac events.
- Use in patients with a history of atrial fibrillation, heart block, or conduction disturbances.

2. SPECIAL WARNINGS AND PRECAUTIONS

- Use with caution in patients with a history of seizures or epilepsy.
- Use with caution in patients with a history of urinary tract infections.
- Use with caution in patients with a history of respiratory infections.

3. DOSAGE AND ADMINISTRATION

- The recommended starting dose is 10 mg once daily, which can be increased to 15 mg or 30 mg once daily in further increments of 10 mg once daily at intervals of at least 4 weeks, based on the patient's response.
- The recommended maximum dose is 30 mg once daily.

4. ADVERSE REACTIONS

- Common side effects include nausea, vomiting, diarrhea, constipation, headache, dizziness, and fatigue.
- Rare side effects include blurred vision, photophobia, and bradycardia.

5. INTERACTIONS

- Use with caution in patients taking drugs that can increase the risk of bradycardia, such as beta-blockers or calcium channel blockers.
- Use with caution in patients taking drugs that can increase the risk of gastrointestinal side effects, such as proton pump inhibitors or histamine H2 receptor antagonists.

6. OVERDOSAGE

- There is no specific antidote for donepezil overdose. Treatment is symptomatic and supportive.

7. CLINICAL PHARMACOLOGY

- Donepezil is a reversible, non-competitive, and selective inhibitor of acetylcholine esterase (AChE).
- Donepezil is eliminated primarily by the liver through oxidation to its active metabolite (M3), which is excreted in the urine.

8. POSTMARKETING SURVEILLANCE

- Reports of adverse reactions to donepezil are rare. However, if you experience any side effects or adverse reactions, please contact your healthcare provider.

9. PATIENT INFORMATION

- Aricept® Tablets ((donepezil hydrochloride 5 mg, 10 mg, 23 mg, 30 mg tablets) (Tablets) (Orally Disintegrating tablets)) is a prescription medicine.
- Aricept® Tablets ((donepezil hydrochloride 5 mg, 10 mg, 23 mg, 30 mg tablets) (Tablets) (Orally Disintegrating tablets)) is not recommended for use in children.
- Aricept® Tablets ((donepezil hydrochloride 5 mg, 10 mg, 23 mg, 30 mg tablets) (Tablets) (Orally Disintegrating tablets)) is not recommended for use in pregnant women.

10. CLINICAL STUDIES

- Aricept® Tablets ((donepezil hydrochloride 5 mg, 10 mg, 23 mg, 30 mg tablets) (Tablets) (Orally Disintegrating tablets)) has been shown to be safe and effective in clinical studies.
- Aricept® Tablets ((donepezil hydrochloride 5 mg, 10 mg, 23 mg, 30 mg tablets) (Tablets) (Orally Disintegrating tablets)) is not recommended for use in patients with a history of significant heart disease or use of drugs that can increase the risk of cardiac events.

11. STORAGE

- Store Aricept® Tablets ((donepezil hydrochloride 5 mg, 10 mg, 23 mg, 30 mg tablets) (Tablets) (Orally Disintegrating tablets)) at room temperature, 15-30°C (59-86°F).
- Keep Aricept® Tablets (donepezil hydrochloride 5 mg, 10 mg, 23 mg, 30 mg tablets) (Tablets) (Orally Disintegrating tablets)) out of the reach of children.

12. PATIENT INFORMATION

- Please read the Patient Information leaflet before starting treatment with Aricept® Tablets ((donepezil hydrochloride 5 mg, 10 mg, 23 mg, 30 mg tablets) (Tablets) (Orally Disintegrating tablets)).
- If you have any questions or concerns about Aricept® Tablets (donepezil hydrochloride 5 mg, 10 mg, 23 mg, 30 mg tablets) (Tablets) (Orally Disintegrating tablets)), please contact your healthcare provider.

13. WRITING THE PRESCRIBING INFORMATION

- The Prescribing Information is written in English and is intended for healthcare professionals.
- It provides important information about the use, dosage, administration, and precautions for Aricept® Tablets ((donepezil hydrochloride 5 mg, 10 mg, 23 mg, 30 mg tablets) (Tablets) (Orally Disintegrating tablets)).
- It is important to read and follow the Prescribing Information before prescribing Aricept® Tablets (donepezil hydrochloride 5 mg, 10 mg, 23 mg, 30 mg tablets) (Tablets) (Orally Disintegrating tablets)).

14. ARICEPT® TABLETS

- Aricept® Tablets ((donepezil hydrochloride 5 mg, 10 mg, 23 mg, 30 mg tablets) (Tablets) (Orally Disintegrating tablets)) is a prescription medicine.
- Aricept® Tablets ((donepezil hydrochloride 5 mg, 10 mg, 23 mg, 30 mg tablets) (Tablets) (Orally Disintegrating tablets)) is not recommended for use in children.
- Aricept® Tablets (donepezil hydrochloride 5 mg, 10 mg, 23 mg, 30 mg tablets) (Tablets) (Orally Disintegrating tablets)) is not recommended for use in pregnant women.

15. ARICEPT® TABLETS

- Aricept® Tablets ((donepezil hydrochloride 5 mg, 10 mg, 23 mg, 30 mg tablets) (Tablets) (Orally Disintegrating tablets)) is a prescription medicine.
- Aricept® Tablets (donepezil hydrochloride 5 mg, 10 mg, 23 mg, 30 mg tablets) (Tablets) (Orally Disintegrating tablets)) is not recommended for use in children.
- Aricept® Tablets (donepezil hydrochloride 5 mg, 10 mg, 23 mg, 30 mg tablets) (Tablets) (Orally Disintegrating tablets)) is not recommended for use in pregnant women.

16. ARICEPT® TABLETS

- Aricept® Tablets ((donepezil hydrochloride 5 mg, 10 mg, 23 mg, 30 mg tablets) (Tablets) (Orally Disintegrating tablets)) is a prescription medicine.
- Aricept® Tablets (donepezil hydrochloride 5 mg, 10 mg, 23 mg, 30 mg tablets) (Tablets) (Orally Disintegrating tablets)) is not recommended for use in children.
- Aricept® Tablets (donepezil hydrochloride 5 mg, 10 mg, 23 mg, 30 mg tablets) (Tablets) (Orally Disintegrating tablets)) is not recommended for use in pregnant women.

17. ARICEPT® TABLETS

- Aricept® Tablets ((donepezil hydrochloride 5 mg, 10 mg, 23 mg, 30 mg tablets) (Tablets) (Orally Disintegrating tablets)) is a prescription medicine.
- Aricept® Tablets (donepezil hydrochloride 5 mg, 10 mg, 23 mg, 30 mg tablets) (Tablets) (Orally Disintegrating tablets)) is not recommended for use in children.
- Aricept® Tablets (donepezil hydrochloride 5 mg, 10 mg, 23 mg, 30 mg tablets) (Tablets) (Orally Disintegrating tablets)) is not recommended for use in pregnant women.

18. ARICEPT® TABLETS

- Aricept® Tablets ((donepezil hydrochloride 5 mg, 10 mg, 23 mg, 30 mg tablets) (Tablets) (Orally Disintegrating tablets)) is a prescription medicine.
- Aricept® Tablets (donepezil hydrochloride 5 mg, 10 mg, 23 mg, 30 mg tablets) (Tablets) (Orally Disintegrating tablets)) is not recommended for use in children.
- Aricept® Tablets (donepezil hydrochloride 5 mg, 10 mg, 23 mg, 30 mg tablets) (Tablets) (Orally Disintegrating tablets)) is not recommended for use in pregnant women.
disorders like Parkinson's disease or Parkinson's syndrome etc. (The symptom can be induced or worsened by acceleration of cholinergic nerve activity in the corpus striatum.)

anti-inflammatory drugs, NSAIDs. (Donepezil may aggravate the ulcer condition due to the increase of gastric acid secretion, and the enhancement of smooth muscle contraction or bronchial secretory action make disease status more severe.)

1) Patients with cardiac disorders such as sick sinus syndrome, intra-atrial and atrioventricular junctional conduction disturbance etc. (The symptom can be induced or worsened by acceleration of cholinergic nerve activity in the corpus striatum.)

2) Patients with a history of ulcer disease or being administered concurrent non-steroidal anti-inflammatory drugs.

2. SPECIAL WARNINGS AND SPECIAL PRECAUTIONS FOR USE

1) ARICEPT is contraindicated in patients with known to have hypersensitivity to donepezil hydrochloride, piperidine derivatives, or to any excipients used in the formulation.

2) Patients with genetic problems such as galactose intolerance, Lapp lactase deficiency or glucose-galactose malabsorption.

The recommended starting dose of donepezil is 5 mg once daily. The 5 mg/day dose should be maintained for at least four to six weeks since the beneficial effect after abrupt discontinuation of the treatment. This medicine is an orally disintegrating tablet, so it can be administered with or without water by melting it on the tongue (Orally disintegrating tab. only).
라디컷® 주30mg (에다라분)
RADICUT® inj. 30mg (Edaravone)

3-NT*(Oxidative stress marker) 감소를 통한 뇌신경보호 효과가 확인된 Radicut®
‘근위축성 축척경화증(ALS)에 의한 기능장애를 능추어준다’ 로 풍족히가 취득

3-NT: 3-Nitrotyrosine

*3-NT: Mitsubishi Tanabe Pharma

신장에 이어 2차 순환이로로부터 60mg을 성장해قضي추사에 시행한 전단에
1일 2회로 반반의 정항응주시한다. 각 납석 뒤에의 주사가 없는
1주일은 흥성의 고달프주입자로 새로운 전단용으로 3주간은 이적 없이 주
받기로 하였고, 제1주에 이어 두 번째 주에 두 번째 주에 실시된다.

사용법 및 주의사항
1. 주사 주사부위는 움푹한 부분을 피하고, 주사부위는 음침한 부분, 엉덩이 등
두부위에 주사할 수 있는 부분
2. 주사 전에 주사부위의 피부를 청소한다.
3. 주사 전에 주사부위로 어린이의 피부를 걸러낸다.
4. 주사 전에 주사부위로 어린이의 피부를 걸러낸다.
5. 주사 전에 주사부위로 어린이의 피부를 걸러낸다.
6. 주사 전에 주사부위로 어린이의 피부를 걸러낸다.

저작권 © Mitsubishi Tanabe Pharma Corporation 2018
SAVE THE DATE

THE 5th INTERNATIONAL CONFERENCE ON MOLECULAR NEURODEGENERATION

Stockholm, Sweden

June 11 - 13, 2018